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INTRODUCTION 

Continuum Mechanics as it was originally developed by Navier, 

Cauchy, Poisson and Stokes among others, consisted of Elasticity Theory 

and Hydrodynamics.  In the former, one is interested in the response, 

particularly the stresses, which will arise in a solid body which is 

subjected to "external" forces—perhaps torques also.  In the latter, 

one analyzes principally the motion of fluids. 

Relatively early, thermal stresses were included in the 

Elasticity Theory by Duhamel and Neumann.  However, these have always 

retained a special position, as they were not subject to Kirchhoff's 

1 
Uniqueness Theorem of Elasticity Theory, which states that in the 

domain of linear elasticity the stresses in a simple continuous body 

| due to externally applied forces are uniquely determined.  Kirchhoff's 

theorem is true under the assumption that St. Venant's Compatibility 

Conditions are fulfilled for the elastic deformation of the whole body, 
not 

These conditions canAbe applied directly to the case of thermal stresses, 

which explains their special position. 
jf. 

In the second half of the 19th Century, plastic phenomena in 

continua were investigated by Tresca, St. Venant, Levy and others, 
j 
s This "phenomenological" theory of plasticity, which was further developed 

later by von Mises, Prandtl, Reuss, Prager, Hencky, Nadai and others, 

stands to some extent between Elasticity Theory and Hydrodynamics. 
I • - T * T 
I Thus the resulting deformation (we call it also total deformation e ) 



of the piastic body contains an elastic part, e, which as in the usual 

Elasticity Theory Rives rise to stresses, and a second part., which we 

P 
call plastic deformation, e , which changes the shape of the body but 

develops no stresses. One has such deformations in pure form in fluids 

Therefore 

T      P e = e + e (1) 

Since at least a part of the internal stress remains without external 

forces after plastic deformation, the elastic strain evidently cannot 

fulfill the compatibility conditions. There one sees an analogy between 

thermal stresses rnd internal stresses after plastic deformation. 

In principle, it is possible ti» scribe a volume element (for 

instance on the surface of the body) before carrying out the plastic 

deformation, and to measure the deformation which it has suffered with 

T 
respect to the initial conditions. This gives the e . When the volume 

element is now cut out and allowed to relax, it takes on not its orig- 

p 
inal shape but retains the plastic strain c . Now this element is 

found as at the beginning in its "natural" state, as it is used in 

Elasticity Theory by Cauchy, Green and others. The element has indeed 

changed its shape, but not its state.  A function that makes a statement 

This statement is rigorously true only when the plastic defor- 

mation results without (plastic) volume change, cf. §2. 

about a body will be nailed a "state Function" or "State Quantity" if 

its values can be measured in an experiment at a certain time without 



:. 

P 
knowing the previous history of the body.  Accordingly, the portion € 

I 

of the total strain is not a state function, whereas the elastic strain 

e is one. The distinction between state functions and functions not 

changing the state is of great significant ind will concern us more 

often. 

It became obvious only in recent years that continuum mechanics 

with its three branches; Elasticity Theory, Plasticity Theory and Hydro- 

dynamics, each in its existing range, is not sufficient to describe 

all macroscopically measurable mechanical properties of a body. 

A simple example may explain this,  a beam with its ends fixed in two 

rigid walls be elastically or partly plastically bent as in Fig. 1. 

Then let both the walls remain in this position and let the rod become 

hot. As a result of heating the critical shear stress (defined as that 

shear stress at which a noticeable flow of the material starts) of the 

rod decreases, i.e., a flow in the interior of the rod can take place by 

the gradual replacement of elastic by plastic deformation. ;■ After hold- 

ing the rod sufficiently long at the elevated temperature, the rod is 

again cooled to room temperature and the restraint at the ends removed. 

We then observe practically no bending back of the rod; the deformations 

have become permanent. We can cut out the volume element and find that 

no (macroscopic) internal stresses are present.  Nevertheless, the rod 

The bending of atomic planes ment ned later is combined with 

self stresses which change their sign in microscopic domains and hence 

» - cannot be found by the above mentioned cutting experiment. Like the 

macroscopic stresses, these self stresses lead to work hardening. 

(See below/. 



responds to subsequent deformation different from a rod which has the 

same shape "without history."  If the critical shear stress of individ- 

ual volume elements were now measured, it would be found that the body 

was in a definite work hardened condition.  The change of state that 

has take, place can be charactei i/.ed in another manner, which can be 

described more easily by the continuum theory.  If the same rod is 

irradiated with X-rays, or if it is transparent to visible light, then 

diffraction effects are found that have their origin in the bending of 

the original atomic lattice planes of the rod.  By this experiment 

the macroscopic curvature can be measured explicitly as a function of 

position. Therefore, this stress-free curvature 01 the atomic planes 

is characteristic of the state of the rod.  In the previous continuum 

mechanics, such curvatures have nowhere be , described. 

In order to comprehend such geometric changes cf the body, one 

must complete the three deformation tensors of eq. (1) by the addition of 

T     P 
rotation tensors q , x, u) to form the general asymmetric second-order 

T     P 
tensors ß , 0, ß which we shall denote throughout as "Distortion Tensors." 

Work hardening still cannot be correctly treated today in con- 

tinuum mechanics.  Investigations of the last 20 years have shown that 

it has its origin in the seif stresses that develop during the plastic 

deformation of the material. Hence, a detailed knowledge of the self 

stresses should, in principle, allow a calculation of the hardening of 

the material.  Furthermore, it was shown that all the self stresses as 

well as bending of atomic planes (therefore also the work hardening) 

can be traced back to the same physical entity, the dislocation. 

However, this is not only responsible for the change of state of the 



body but also for thai portion of its total deformation which does not 

alter (he state ot the body.  Accordingly) a continuum theory of dislo- 

cations is evidently required in order to close the still wide gaps of 

continuum mechanics.  In addition to the abeve features, this continuum 

theory of dislocations should include a theory of self stresses as *ell 

as a tli. ry oi stress-free bending of atomic planes, as was first formu- 

lated by Nye [113],  Also, it must describe the relationship between 

the dislocation motion and plastic deformation.  In this way we are led 

to phenomenological plasticity theory.  Thus one obtains, interrelated 

and overlapping, fclasicity Theory, Theory of Dislocations and Theory of 

Plasticity as branches of the comprehensive continuum mechanics, which 

treats all mechanical phenomena occurring in a solid body. 

It remains yet to be said how one has to include in this con- 

tinuum mechanics thermal stresses and other stresses (we refer to 

stresses due to magneto- and electrostriction) which arise neither from 

external forces nor from plastic ^„'formation.  On heating a body uni- 

formly to a higher temperature, its material points undergo displace- 

ments, without introducing restoring forces.  The same  ct is also 

characteristic of plastic deformation.  Since it is apparently natural 

to consider the case of deformation by temperature fields as a kind of 

plastic deformation, we will call it "quasi-plastic."  One can then 

trace the thermal stresses back to certain "quasi-dislocations" and 

thus according to Kroner [82] a theory of thermal stresste is obtained, 

which is to some extent a continuum theory of "quasi-dislocations." 

This agreement is not only formal but ilso physically reasonable, and 

thus it appears quite natural to include thermal stresses (and the 

other abovt-mentioned stresses) in the Continuum Theory of dislocations. 



The treatment of particularly interesting problems, for example, those 

in which there exist simultaneously thermal stresses and self stresses 

after plastic Reformation, is made remarkably easy in this way. 

The whole continuum mechanics of solid bodies is now contained 

1 
in a few equations.  For the stationary state these are the equations. 

We consider that the boundary conditions are included in 

these equations by allowing F and at  to degenerate surfacewise  (and 

also linewise or pointwise).  If one allows external twisting moments 

also, further equations are added. 

div o + F = 0,     curl £ = a (2) 

where 3 and j3 are the stress tensor and the elastic distortion tensor; 

F and a1, the density of external forces and of dislocations (including 

quasi-dislocations) respectively.   To this are added the equation for 

the elastic energy density (= strain energy function or elastic 

2 
potential) 

2 
We use throughout the text tne summation convention where we 

sum from 1 to 3 over repeated indices.  The use of tensor notation is 

explained in the appendix. 

e = r c. . e.. (3) 

and the constitutive equfecions, for instance, Hooke's Law, in the case 

of small deformations. Under these circumstances the uniqueness theorem 



of continuum mechanics of solid bodies can be proved:  by specifying 

the extern il forces F and dislocations a  the stresses and elastic dis- 

tortions of the body are uniquely determined.  From this it follows 

immediately that all self stresses arise from dislocations.  However, 

in the case of larger deformations this is not true, as the example of 

the invertible hemispherical shell shows [160]. 

In the beginning of the twenties, the interest of the solid 

state physicist was concentrated on the crystalline structure which 

most of our materials, particularly the metals exhibit.  These are 

composed of crystals (polycrystalline) in regions of an average 

-3 15 
diameter of at least 10  cm ( corresponding to nearly 10  atoms). 

With methods which were developed then and subsequently greatly 

improved, it is possible to grow a "single crystal" of almost any size 

of many materials today.  Although these are of great significance for 

experimental and theoretical research, however, they have also found 

important applications in industry, e.g., in transistors of communica- 

tion engineering. 

The concept of the dislocation was used first in 1928 by 

Prandtl [108]—still in vague form—to explain anelastic phenomena 

in metals.  In 1929 Dehlinger [29] was able to show by studies of 

recrystallization, i.e., the formation of new grains which one 

observes after heavy plastic deformation and which has its origin in 

the large self stresses developed thereby, that these self stresses 

are to be traced back to certain defective zones of the otherwise fully 

regular arrangement of atoms in the crystal, and that these regions 

can be metastab^e.  Dehlinger named his self stress sources "interlocks" 



(Verhakungen) which are nothing but two dislocations of opposite sign 

lying close together.  It was thereby explained why self stresses are 

generally possible at all in a crystalline medium.  As a  result of 

these investigations, attention was particularly directed to distur- 

bances of the regular atomic arrangement. One calls such disturbances 

"lattice defects"; they play a decisive role in modern solid state 

physics. 

In 1934, the lattice defect which we illustrate with aid of 

Figs. 2 and 3 was described independently by Orowan [114], Polanyi [118] 

and Taylor [149].  Figure 2 shows a completely regular crystal, called 

"ideal Crystal." Figure 3 shows the same crystal after the invasion of 

a disturbance from the x direction.  The disturbance is characterized 

by the fact that one of the lattice planes terminates in the interior 

of the crystal. Today, the line of termination of such an extra lattice 

plane is called an "edge dislocation line" or simply "edge dislocation." 

Figure 4 shows the same crystals after the disturbance is no longer in 

the crystal.  By the movement of one dislocation through the crystal, 

the upper and lower halves of the crystal have been displaced relative 

to each other by one interatomic distance.  The vector which specifies 

the relative displacement in the slip plane is called "the slip vector," 

g.  It is perpendicular to the edge dislocation line.  If there was a 

shear stress applied to the crystal, work was done by passing the dis- 

location through the crystal.  Consequently, such a shear stress con- 

stitutes a driving force for dislocation motion.  The above mentioned 

authors now noticed that the movement of an edge dislocation must be 



possible under the influence of relatively small stresses.  Figure 3 

gives a certain optical impression that near the dislocation the 

i 
adjoining atoms should be more easily movable than the rest. 

Already in 1926, Frenkel with the help of an atomic model 

had computed that slip which produces the transition of the crystal 

i 
of Fig. 2 to that of Fig. 4 requires a shear stress of the order of j 

magnitude of the shear modulus, p,, if both of the moving lattice planes 

i 
slip rigidly by an interatomic distance.  Experimentally, a critical 

J 

shear stress more than a thousandfold smaller is measured. The plas- 
i 

ticity mechanism proposed by Orowan, Polanyi and Taylor should lead 

to actually a smaller critical shear stress. 

According to Dehlinger [31], these purely mechanical consider- 

ations are not sufficient to prove that the rigid glide of two adjacent 

lattice planes cannot actually take place.  Therefore, statistical 

thermodynamic considerations, particularly the theorem that in a solid 

body only processes of lowest order can take place, must be invoked. 

Applied to our case it says:  it is extremely unlikely that by temper- 

ature fluctuations those atoms of a lattice plane simultaneously have 

such an increased energy that they make a simultaneous slip step, 

which would be equal to a rigid gliding of the lattice plane in question. 

Such considerations are essential if we should want to calculate the 

theoretical critical shear stress under the assumption of the dis- 

location mechanism.  Seeger [137] has shown that the critical shear 

stress, neglecting temperature fluctuations, which one would calculate 

purely mechanically, often comes out to more than 100 percent too large, 

"**• »"-^W-.i . ,,..,w. 
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(Footnote cont'd.) 

Because of its importance for such problems, we should mention 

a new work of Donth [164], who has shown that in a statistical treatment 

of dislocations one should pruceei' from Kolmogoroff's equations for 

statistical processes, since the assumptions for the application of an 

Arrhenius equation are not satisfied in the case of dislocation. 

Burgers [12] in 1939 has described an additional lattice defect 

which causes the original lattice planes now connected in the manner of 

a screw surface (Fig. 5). The screw axis is called a "screw dislocation 

(line)." One sees that these screw dislocations also will be relatively 

easily movable. One can imagine that the screw dislocation in Fig. 5 

invaded from the x direction. Figs. 6 and 7 show the crystal after the 

movement of the screw dislocation of Fig. 5 in x and x directions, 

respectively. Here again certain crystal parts are displaced relative 

to each other.  But the slip vector here is parallel to the screw dis- 

location line.  Burgers has further shown that there are also disloca- 

tions whose slip vector is inclined to the line direction of the dis- 

location.  Such dislocations are appropriately considered as the super- 

position of one screw and one edge dislocation along the same line, so 

that such dislocations are not fundamentally new. 

However, the possibilities of motion of the dislocation have 

not yet beer, completely discussed. There is still the important pos- 

sibility to consider a motion of the dislocation of Fig. 3 in x direc- 
o 

tion.  This means an enlargement of the extra lattice plane, which is 

possible in practice only if atoms from the neighborhood of the dislo- 

cation are added by diffusion. The migration of an atom in a crystal 



11 

always occurs over an energy barrier of the order of 1 ev (= 1.63 x 

-18 1 
10 * kg-m) which cannot be overcome by external applied stresses. 

Macroscopically 1 eV is a very small energy. However, this 

-24  3 
must be localized in a space of only some 10   cm , and this is 

obviously not possible from externally applied stresses. 

Rather the temperature fluctuations must make the necessary ' activa- 

tion energy" available. Consequently such a diffusion can take place 

to a large extent only at elevated temperature. The dislocation motion 

taking place ir this way is called "climb" in contrast to the "slip" 

described above. Each atom which attaches itself to the extia lattice 

plane leaves behind a so-called "vacancy." These vacancies are to be 

counted in the volume we can measure macroscopically, i.e., by the 

climb of dislocations the volume of the body changes; this kind of 

motion, after Nabarro [108], is called, therefore, "non-conservative" 

(with respect to the volume), whereas the glide motion is called 

"conservative." 

If the dislocation were to climb, for example, in the x 
O 

direction completely through the crystal of Fig. 2, this would require 

that a new lattice plane be formed and causing the crystal to be 

elongated in the x direction. Accordingly, a pure tensile stress 

(a  > 0) should exercise on the dislocation a restraint to climb in 

x direction. A compressive stress, however, may remove the extra 
O 

lattice plane; however, this is possible only until all the vacancies 

in the neighborhood of the dislocation are filled up with the atoms 



12 

of the extra lattice plane. We see that the volume of a body can even 

become plastically changed, a possibility which will be included in the 

theory developed in Chapter I. 

The climb of the dislocation plays an important role in many 

processes in a  did body at temperatures just below the melting temper- 

ature, e.g., recrystallization and the formation of casting stresses. 

A look at Figs. 2 through 7 shows that we should expect self 

stresses in the states of Figs. 3 and 5, whereas the crystals in the 

remaining figures are in the natural state. 

Strictly speaking, for instance, the state in Figs. 2 and 6 

differ from Fig. 3 by the fact that in consequence of the ledge 

developed the crystal has a changed surface.  It is not necessary 

to consider this for our purpose. See, e.g., the discussion of 

Nabarro [110], pg. 330. 

We will show in §1 the close relationship of the states of 

these self stresses with those of Volterra distortions. Based on 

the works of Volterra, in 1939 Burgers [13] developed an elasticity 

theory for a single dislocation in a continuum, from which the self 

stresses resulting from dislocations co' 1 be calculated. This 

fundamental work was followed by numerous special elasticity theory 

calculations on dislocations. 

Hereafter the following picture of the process of plastic 

deformation in a metal can be given: under the influence of the 

externally applied stresses, large amounts of new dislocations are 
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developed in addition to the dislocations always existing in the 

crystal.  These move according to the forces exerted whereby they 

produce the macroscopicalJy observed deformations. However, the 

These originate during the growth of the crystals, which 

makes them possible in general. 

increasing number of other dislocations produce self stresses in 

increasing amounts, which oppose the motion of dislocations, as was 

first proposed by Taylor [149].  This effect leads to the work 

hardening of materials. 

<h «ü 



CHAPTER I 

DISLOCATIONS IN CONTINUA:  GEOMETRY 

si.  Dislocation and Volterra Distortion 

In the beginning of this chapter, the close relationship 

between dislocation and Volterra distortion will be clarii'-'ed. 
a 

Let f be\)lan9 surface ending, at least partly, in the inter- 

ior of a simply connected continuous medium with (dimensionless) unit 

1     - 
normal vector n(x) at position x.  Let t(x) be the unit tangent vector 

of the edge lines of f which are oriented according to the right hand 

screw rule. We imagine that the stress free initial state of the body 

under consideration is cut along the surface f, then the positive cut 

edge of f suffers the infinitesimal plastic displacement 6jg(x) relative 

to the negative. The displacement 6g will be carried out in two steps, 

since the analysis will be in terms of the two components parallel 

(6g||) and perpendicular (6gJ_) to f.  After the parallel displacement 

6g| | both the sides of the surface f are still in touch with each other. 

The restriction of a plane surface facilitates description, but 

is not necessary. We see easily that the essential results of this 

paragraph, particularly the definition of the dislocation are valid also 

in the case of curved surfaces. 

14 
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For the latter displacement, 6gJ , perpendicular to f, we have 

two cases to disttngir th:  (1) Beth the sides of f are pushed apart; for 

- - this case, we decide that the resulting void is filled with matter 

identical to the rest of the body.  (2) Cases in which 6gJ_ signifies a 

displacement of both the cut edges toward one another; just enough 

material shall be removed from one of the two cut edges that this dis- 

placement becomes possible. After the execution of the operations, we 

imagine everything to have coalesced and the forces which produced the 

displacements to have been removed, so that again a united simple coher- 
i 

ent body exists, in which, naturally, self stresses remain.  Irrespec- 

tive of the material and shape of the body, these are determined by the 

position of the surface f, i.e., by n, as well as by the resulting 
j 
j "impressed" or "plastic" relative displacement 6g. 

We remark further after a well-known theorem of Colonnetti [18] 

j that the volume of the body in the final state differs from that in the 

j 
| initial state by the volume of the added or removed material, thus by 

i 6V = JT n • 6g df.  This theorem holds only in the domain of linear 
i ~ 

I elasticity theory and there also only for homogeneous bodies (thus, for 

| example, not for bodies which consist of two homogeneous parts with 

different elastic constants).  Along the surface f the elastic deforma- 

tions and torsions of the volume element of the body are changing dis- 

continuously, which was first investigated by Weingarten [157] and 

1 
later in detail by Somigliana [147].  However, if both cut edges of 

The older results of the self stress theory have been reported 

by Nemanyi [111].  This work contains also many selections valuable 

even today. 
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a surface element, LX, of f have merely suffered a rigid displacement, 

then the strains are continuous across hi',  the rotation is also contin- 

uous across Af.  It is additionally necessary that 6g = constant on Af. 

At the end of the operation, the body shall be again simply 

connected, with no cracks, thus the cut edges of the total surface f 

cannot be rigidly displaced toward one another. Dislocations are formed 

by the following process. Let 6g be constant on nearly the total surface 

f, except at the edge of f let it decrease very rapidly to zero. 

Figure 8 shows the variation of 6g on a plane surface f assumed circular 

for simplicity. We nov define a dislocation line as the boundary of the 

surface f, or more precisely, the dyadic product -t6g = - (t.Sg ), where 

by 6g shall be meant the constant displacement on most of the surface. 

The minus sign is conventional, in conformity with the usually 

employed sign convention of Frank [47], 

To say it more precisely:  there is no singular line -t6g, but a 

quasi-singular band of very small width 2£ (Fig. 8). Hence we complete 

the above definition by adding that this shall be valid for the limit 

2 C-o. 

2 c- Then the function ög assumes the character of a Heaviside step 

function in the plane in which f lies. 

A second prescription leads to Volterra distortions.  It is 

required that initially (or at the latest after the cutting along f) the 
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boundary of f is surrounded by a hollow torus of radius > £. Then the 

t 
' body is of course no longer simply connected, and the surface f is 

bounded everywhere by the surface of the body.  Due to this, a rigid 

displacement of the cut edge of the total surface f is possible. 

If we set 6g = constant, then we obtain a so-called Volterra distortion 

'■ state of the first kind, so at large distances we cannot distinguish 

| between the hollow torus and the state developed through a dislocation 

] (Principle of St. Venant).  Burgers' investigations on the elasticity 

,\ theory of dislocations are based on this conclusion. 

t We shall talk in §7 about the Volterra distortion state of the 

second kind, in which the rigid relative displacement is a rigid rota- 
I 
I tion of the cut edge.  From our standpoint this is not as important as 

I the state of 6g = constant. 

From the definition of the dislocation it follows that: 

1. The dislocation, as the boundary of a surface, can only 

end on the surface of the body. 

2. Since the strain and rotation remain continuous across the 

surface f, it can no 1< nger be found experimentally after the formation 

of the dislocation line.  Thus all surfaces bounded by t could have 

served as cut surfaces in order to produce the dislocation or the dis- 

tortion state, i.e., it is completely determined by the edge line t,and 

the relative displacement 6g. 

Assume that a stress resulting from external forces was present 

in the body during the operation of the relative displacement.  Then 

" * this stress could do work during the displacement.  Consequently, 

stresses exert forces in the body in the sense of the production and 
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propagation of dislocations.  In particular, if a shear stress acts 

oi\  a plane, then it creates a tendency fox conservative formation and 

propagation of the dislocation (i.e., 6g|j to the surface), whereas 

a normal stress perpendicular to the surface means a tendency for non- 

conservative formation and propagation of the dislocation (6g]_ to the 

surface).  Whether such processes will actually be induced through the 

application of external stresses alone on the body will depend on the 

cohesion forces of the material.  Especially then, for the nonconserva- 

tive formation and propagation of a dislocation, diffusion of matter 

will be necessary.  In the introduction it was pointed out that these 

processes are the fundamental mechanisms of plastic deformation in 

actual bodies.  Therefore, we assume this also for our ideal continuum. 

With reference to the explanations in the introduction, we 

denote the conservative propagation of a dislocation as glide and the 

associated surface f as the slip plane.  The nonconservative propaga- 

tion we call climb, the associate surface f, the climb plane.  In 

general, we speak also of the motion of the dislocation along its 

motion surface.  We say further tfcat a dislocation has an edge 

character where t I ög and screw character where t || 6g.  Where t 

is inclined to 6g, it has mixed character.  Figures 9 and 10 show the 

formation of a pure edge and screw dislocation.  Obviously the dislo- 

cation formed purely nonconservatively is an edge dislocation.  This 

corresponds to the statement in the introduction that only edge dislo- 

cations climb in the crystal.  The conservatively formed dislocation 

has, in general, mixed character.  This corresponds to the result that 

not only screws but also edge dislocations glide in the crystal. 
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These ideas clearly show that the dislocation concept employed here 

Is nothing but a transfer of the dislocation concepts from the 

crystal to the continuum. 

§2.  Plastic and Elastic Distortions 

First of all, a remark on the ideal continuum.  Let it be 

assumed for simplicity that in the beginning it is in a homogeneous 

state.  On the other hand, it would be a limitation of fundamental 

importance if we assume isotropy also.  Here we do not mean elastic 

isotropy, this is completely unimportant for the geometric analysis of 

this section.  On the contrary, the \.  ssibility that the medium is 

geometrically anisotropic must be considered. This means that at every 

point of the medium, three linearly independent, distinct directions 

exist about which it is assumed that their angles with three normal 

directions in space can somehow be measured.  This geometric structure 

must therefore be demanded, since the real bodies to which the continuum 

theory shall hereafter be applied, have this structure.  We show it, for 

example, by means of X-ray techniques. 

We assume that this structure is a property of the individual 

volume elements in the continuum.  The stress free state of the medium, 

in which the distinct directions of all volume elements are parallel 

to one another, is defined as the initial state.  In the final state, 

we have then a certain orientation distribution which gives proof of 

the rotations of the volume elements that have taken place (see below). 

For simplicity, we assume that the distinct directions in the initial 

state are orthogonal to one another.  The reader used to think of crystals 
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may picture to himself the continuum somewhat like a primitive cubic 

crystal with vanishingly small lattice constants. 

We can now allow the operations described in the last para- 

graph to take place at very many surfaces f. When these become infin- 

itely dense and the proper relative displacements 6g are continuously 

distributed, we can perform in this way continuously distributed pure 

plastic or also mixed plastic-elastic deformations of the body. The 

first process may be illustrated by Fig. 11.  This shows an isolated 

volume element dV in the initial state (a).  This will be cut along 

surfaces df at distances dx perpendicular to x -direction and after- 

wards a relative displacement 6g imposed on every two neighboring 

layers.  We imagine the passage to the limit 6x -* 0, 6g -* 0 carried 

out maintaining 6g/6x constant.  In the case of Fig. 11(b), the voids 

shall be filled with matter of the same volume element in such a way 

that the density distribution in it remains homogeneous. At the end 

let all coalesce again.  The volume element in Fig. 1Kb) is then 

completely homogeneously plastically stretched (and thereby "thinned") 

and in Fig. 11(c) and 11(d) homogeneously plastically sheared. 

We generally denote by dg the relative plastic displacement 

of the boundary surface of the volume element on the +x side with 

respect to that one on the -x. side and define the asymmetric tensor 

P    P 
of the plastic distortion 0 = (3..) through the relation 

dgj = ^  dx. (I.l) 

where dx shall be referred to the relative position of the mentioned 

boundary surfaces and to the original state. The plastic distortions 
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which correspond to Fig. 1Kb) to 11(d) are accordingly to be denoted 

p     p        p  «sP«ctively« 
by 0oo» Bo? and Boi'  The diagonal components of the plastic distortion 

32   23      21 
P 

tensor     8  are thus plastic elongations, the remaining components 

are plastic shears whereby the first index indicates the glide planes 

and the second the glide direction. 

It is now particularly important to remark that in the case of 

plastic distortion, the orientation of the volume element is not changed. 

We conclude this from the way the distortion in Fig. 11 comes about. 

1 
One may conceive the volume element of Fig. 11(a) somewhat like 

an infinitely densely packed band of material lines, which lie parallel 

to the x -direction.  The operations which Fig. 11(b) to 11(d) convey 

obviously do not alter the direction of these lines.  We can also simply 

postulate the preservation of the orientation, because the real bodies 

for which the theory is later applied, show this property. 

P      P 
Hence, the distinction between the shears 0  and 0  is not a rigid 

rotation but a "plastic rotation" of the volume element while preserving 

i 
its orientation (Fig. 12(a),(b)). This statement holds for small dis- j 

! tortions.  Then the symmetric part of 8  describes a pure plastic strain 

P P 
€  and the antisymmetric part a pure plastic rotation (D.. both maintain- 

ing the orientation.  Also for large distortions, the division of distor- 

2 
tions into strain and rotation holds 

2 
The additive combination of deformation and rotation holds in 

the case of large distortions only if dx in eq. (1.1) is referred to 

the initial state.  Cf. §10. 
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„P      P      P /T „* 
9iJ = «ij + ■« (I'2) 

p 
Here, however, we have to understand by m  the well-known asymmetric 

1 P 
tensor for large rotations (Versor) [34].  On the other hand, e.. 

remains symmetric.  See also §10. 

Volume 1, p. 78. 

The deformations of the volume element considered hitherto took 

place without stress. Now we come to the case of the elastic deforma- 

tion. Let da be the elastic relative displacement of the boundary sur- 
ü 

faces as before. Then we define the asymmetric tensor of the elastic 

distortion g = (ß ) by the equation 

da, = 3,. dx. (1.3) 

The ß  describe the same change of shape and position of the volume 

p 
element as the ß , however, an essential geometric difference exists: 

in the case of the elastic shear, the original right angle beteeen the 

indicated directions is changed by the shear angle.  Consequently, the 

difference between ß  and ß  in the case of smaller distortions is 

now a rigid rotation of the volume element (Fig. 12(c), (d)).  We split 

ß  again into its symmetric and antisymmetric parts 

*ij= 6ij + u,iJ' (I'4) 

thus e  is  the ordinary strain tensor of the elasticity theory and 

I»  the tensor which describes the rigid rotation of the volume element. 

The same holds as before in the case of larger distortions. 

There is no basic difficulty in measuring the elastic deformation 

of a volume element in £h« final state when we cut it out and let it relax. 
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Thereafter, its principal directions are again orthogonal to one another 

and we can measure in addition the orientation of the elements with 

respect to a normal orientation.  If we carry this out for all the ele- 

ments, we can specify the rotations that took place up to a constant 

rotation common to all of the elements. This means that the elastic 

strain is a state function, whereas the same is not true for the rota- 

tions but is true for their local derivatives. These describe clearly 

a bending of the structure. Since the elastic deformations and struc- 

ture curvatures follow uniquely from the elastic distortion tensor, this 

characterizes the state of the medium after the deformation. But it is 

impossible to measure only from the final state the plustic distortions, 

strains and rotations that took place.  This is due to the fact that by 

a pure plastic distortion, as in Fig. 11, the state of a volume element 

is not changed.  See also the introduction. 

In the general case, a volume element will he simultaneously 

plastically and elastically distorted.  Let 

T 
ds = da + dg (1.5) 

be the total relative displacement of the boundary surfaces of the 

volume element as before. Then we define the tensor of the total 

T    T 
distortion 0 = (0 .) by the equation 

d8Ij ■ 0Ij dv «•« 
To begin with, it is sufficiently characterized by the relation 

•Ij " Si.1 + <1 (I'7) 

Equation (1.7) is also correct for larger distortions when one refers 

dx always to the initial state (§10). 

I 



24 

§3.  The Geometric Principal Equation of the 
Continuum Mechanics of Rigid Bodies 

We describe in the following a thought experiment, which is taken 

as a basic experiment in the continuum theory of dislocations. 

If we apply a sufficiently large external stress to a plastic 

medium, it is possible that dislocations are developed, move, and pro- 

duce plastic distortions of the body's volume elements.  It is possible, 

for instance, that these dislocations leave the body or that disloca- 

tions with opposite sign cancel each other in the interior of the body, 

or that dislocations come to rest after moving in the matter and produce 

a dislocation density.  We assume that these dislocations come to rest 

not in the interior but between the volume elements.  As the size of the 

volume elements is expected to become zero, we get at least a macroscop- 

ically continuous distribution function of dislocations, if the exterior 

stress is continuous.  It is usually assumed in continuum mechanics that 
essentially 

the distortions are^'iomogeneous over many volume elements dV, which means 

that the dislocations move ir. straight lines in such a region. 

As a result of the stresses which are applied to the body, each 

volume element will experience a certain dislocation motion, and this 

we will evaluate as a function of the position of the volume element, 

for instance, relative to the initial conditions (§4).  Now we imagine 

that the body in the initial condition is cut into its volume elements 

and the dislocation motion associated with the element is carried out in 

each element independently of the other elements.  In other words, we 

p 
impress on each element a plastic distortion, ß (x).  In any case the 

elements are without stress afterwards and also their orientations are 

preserved.  Now there are two possibilities. 
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1. The volume elements fit together completely after accom- 

plishing the plastic distortion, and there are no cracks. Then we can 

imagine that they can coalesce without restraint, and we get the body 

in the shape that it would be if we had not cut it before the disloca- 

tion motion.  Especially, the body is without self stress and structure 

curvature.  So the state of the body is not changed but the shape is. 

Experiments of this type in which only the strain (not the 

rotation) considered, are described often in the literature.  See Fopp [44] 

Reissner [122], von Laue [87]. 

2.  The volume elements do not fit together after the deforma- 

tion.  Figure \'J  shows an example in which the connection of the elements 

is destroyed, since dislocation, which moved in from top left and whose 

lines are perpendicular to the plane of the paper, came to rest between 

the volume elements in such a way that the upper elements have been 

traversed by more dislocations and therefore are more distorted than the 

lower ones; meanwhile for the same reason, the elements to the left are 

more strained than those to the right.  If we then try to combine the 

elements to a compact body, we have to distort them elastically in such 

a way that they fit together completely.  For this we have to use elastic 

distortions and rotations in general. The former produce stresses, the 

latter will rotate the orientation. Now we imagine that all is coalesced 

again, and the forces which produced the elastic strain are removed. 

In general, then, a relaxation of the body will occur to the state of 

lowest possible elastic energy. However, the stresses vanish completely 

■-""  > ,.-*■.-*;.:.M 
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only if rigid rotations would be sufficient to restore the connection 

which was disturbed by the plastic distortion. Finally, of course, we 

have the same state that we would have if we did not cut the body before 

the dislocation motion. 

Ihis thought experiment has to be evaluated quantitatively. 

Both possibilities have in common that the body should be compact and 

without cracks in the final state; i.e., however, that the total distor- 

T 
tion 8 is a function of the position, such that the connection of the 

volume elements is maintained. This requirement restricts the admissible 

T P 
functions ß by which the function 0 is also governed in the first case, 

but not in the second case. 

We will show now, that 

(e.„ ^- aT„)*Curl pT = 0 
ljk ox. &P * 

3 
(1.8) 

is a necessary condition in order that the connection between the volume 

elements is not changed. Figure 14a shows two elements in the initial 

state. The connection between the two is maintained if the right bound- 

ary surface of the left and the left boundary surface of the right 

T 
suffers the same displacement. This means that the component 0  and 

2j 
T T 

ßg have to be the same in both elements, while the components   ß . 

are allowed to change. Figure 14(b) and (c) shows an example of what 

T     T 
it looks like if the elements suffer a different distortion ß  andß . 

Hence, it is necessary to maintain the connection that 

aßg./äx^ = dß3./dx = 0.  From this we conclude the necessary condition 

It is also sufficient if we assume a continuous total displace- 

ment. We will no longer be concerned about this. A non-vanishing 
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(Footnote contd.) 

T 
function Curl 0 could be called a crack density. Such things will 

occur if we take too large a pass during rolling a metal. 

T 
(1.8) at once.  Then obviously, ds in eq. (1.6) is a complete differ- 

T 
ential, i.e., a function s exists, which measures the total displace- 

ment (except for a rigid translation) of the points of the body.  So it is 

0*. = ÖPT/dxi = (Grad s
T) (1.3) 

P   T 
In the case (1) described above 0=0 for 0=0, so dg. in en. (T.l) 

is a complete integral and 

P P 
0 = Grad g = Grad s (I.10) 

p 
In this case we get a pure plastic displacement s of the points of 

the continuum, by which its state is not changed. This case is of 

great practical importance for plastic deformation.  We will refer to 

it later on. 

Now we define conditionally the asymmetric tensor of the 

dislocation density Of s (a..) by the expression 

a 5 - Curl 0P (1.11) 

and we will show in the next step, that this definition is the same 

as that of the single dislocation. 

Figure 15 shows a body into which a small number of dislocations 

invaded, of which we assume that they are perpendicular to the plane of 

the paper. The surfaces of motion of the dislocations are drawn in such 

a way that they were drawn straight, if the dislocation, which is placed 

•«h»s**ur *trtnm.imm 
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at the end of a surface of motion, cuts the plane F, which has an 

arbitrary boundary C. Otherwise they are dotted. The motion surfaces - • 

are oriented in such a way that they were cut in the positive direction 

by C.  Now we go along C and add at each motion surface the relative 

displacement 6g, resulting from the dislocation motion, considering 

both the positive and negative side of the surfaces.  For simplicity 

we assume, that 6g is the same for all motion planes.  As we can see 

 , ,  i 
This does not mean a restriction of the generality of our j 

I 

consideration, as will be shown in the following calculation. j 

 .  | 

at once, the dotted planes do not contribute anything to the sum, as 

they give two opposite equal values.  That is why 

b = - Z 6g (1.12) 
C 

is a direct measure for the number and kind of the dislocations cut by 

the plane F.  We call b the "Total Burgers Vector" of those disloca- 

2 
tions.   In the case that the boundary C encloses only one dislocation 

2 < 
In honor of J. M. Burgers, who introduced the circuit vector b 

to specify a dislocation in a basic paper [12], 

then b = - 6g is the Burgers Vector at this single dislocation. 

We showed in §1 that the state of the matter with one disloca- 

tion is completely determined by the specification of the curve t and 

glide vector 6g. Now we will see that instead of the glide vector we 

can use the Burgers vector.  Note the important distinction between these 
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vectors:  6g states that due to a dislocation, which moves along a 

plane, the positive side of the plane is displaced with respect to the 

negative side by 6g. However, where no dislocation has moved along 

6g = 0.  6g is therefore a vector which is bound to the motion plane 

and especially preserves its sense in the case that the dislocation has 

moved out of the matter, i.e., if it no longer exists.  Whereas it is 

only possible to define b in connection with the curve C and the bounded 

surface F, respectively, and it tells us something about the distribu- 

tion of the dislocations in the body. 

When the distribution of the dislocations is sufficiently dense, 

we are allowed to substitute the summation in eq. (1.12) by the integral 

(1.13) b H - j» 6g 
C ~ 

If we have infinitesimal areas, AF,  we call the resulting Burgers 

AF must be much larger than dF in order to define a disloca- 

tion density through AF.  If first dF goes to zero, then after this you 

can take the limit for AF -* 0. 

vector Ab.  If we know this for every arbitrarily oriented surface 

element at each position in the medium, then obviously we know how many 

dislocations of each kindare at each point of the medium.  That is 

why the expression 

a. . =  Ab./AF. (1.14) 
ij    J  i 

is defined to be the "tensor of the dislocation density" or (shorter) 

the "dislocation tensor." As the dislocation density is a tensor field, 

it is sufficient to know the Burgers vector of three plane elements, 
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which are oriented in the sane manner as the cartesian coordinate axis. 

II w Ksasurs, e.g., the Burgers vc-. ,-r of the plane &F having only the 

component AB» and we have no values for the planes AF_ and &F , then it 

is obvious that the line direction and the Burgers vector are parallel; 

according to §1 ths diagonal components of Or  are screw dislocations 

n  the i (=j) direction.  Similarly, we will notice that the other 

components of »  are edge dislocations in the i-direction with the 

Burgers vector in the j-direction.  In short, the first index of at 

indicates the line direction, the second one the direction of the 

Burgers vector.  We call the total Burgers vector of all dislocations 

cutting an arbitrary plane F the dislocation flux through F.  From 

eq. (".  14) evidently it is defined as 

b = ff dF • a (1.15) -   "i -   - 
On the other hand, we can calculate it by eq. (1.13) to be 

b = - §  6g = - f  dg = - jl dx 0P = - // df Curl |P (1.16) 
C ~    C      C F 

In this we use the fact that if we integrate J ög along dx , dg 

results of course (Fig. 11); this is replaced by eq. (1.1) and finally, 

Stokes' theorem is used.  Since the surface F was arbitrary, we conclude 

eq. (I.11) directly by comparing with eq. (1.15). 

Hence, from eq. (1.7), (1.8) and (I.11) follows immediately the 

"geometrical basic equation of continuum mechanics." 

Curl 0 = Of (1.17) 

1 
Equation (1.17) or equivalent formulations were independently 

given by Kondo [73,74], Bilby, Builough and Smith [3,4,5] and Kröner 
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(Footnote contd.) 

[81,82,84]. The first of the authors Mentioned used from the beginning 

formulations which hold for large distortions (126 to §28), whereas the 

present author introduces those distortions later on. The derivation 

given here was carried out by Kröner and Rieder. Equation (1.17) reads 

in cartesian coordinates 

*31 äX2 - »21 ÖX3 = °il' *32/ÖX2 " *22/a"3 = *12 

^33 b\ -  d923/dx3= ai3« etCl 

According to what we mentioned before, it is understood as follows. 

P 
If dislocation motion or a plastic distortion ß , respectively, occurs 

in such a way that dislocations with density or come to rest in the 

P 
medium, then the distortion 0 , if it occurs alone, would destroy the 

connection of the body.  Since the cohesion forces of the medium oppose 

this, elastic distortions develop simultaneously in such a way that the 

{ body remains intact. Equation (1.17) holds also for large distortions, 

if we refer a  and 8 to the initial state and we also differentiate in 

the initial state.  See 110. 

Hence, from eq. (1.17) follows the relation first mentioned by 

Nye [13] 

(dor /ox.) 5 div Of = 0 (1.18) 

As the first index of or. . indicates the line direction of the dislo- 
ij 

cation, obviously this equation means nothing more than the fact that 

dislocation lines are not allowed to terminate in the interior of a 

medium. This we emphasized in SI. 
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T 
From eq. (1.5) follows, since ds is a complete differential, 

the relation 0 da = - $  dg tor  an arbitrary closed curve. Heace, it 

follows fron eq. (1.13) also 

b = § da = § dx • 8 (Z,19) 
C ~  C 

In this form Burgers had introducd the circuit vector b. 

Finally, we will mention another analogy, which is related to 

the theory for the magnetic field of a stationary current and which was 

extremely useful in finding the geometrical basic equation [81]. The 

quantities by analogy are: electrical intensity of current i, and 

Burgers vector b; current density j and dislocation density a;  magnetic 

field H and distortion field 0. For later on we add: magnetic induc- 

tion B and stress a.    The equations analogous to (1.15), (1.17) and 

(1.18) are: i = ff dF • j, curl H = j, div j = 0. 

§4.  Dislocation Motion and Plastic Distortion 

The geometrical basic equation (1.17) contains only state 

variables, which is why it is useful to describe the state after the 

plastic deformation is carried out. However, we need a relation which 

describes quantitatively the notion of the dislocation and the result- 

ing plastic distortions.  The equation which will govern this will not 

contain state variables. 

We can imagine that the distortions of Fig. 11 produced dislo- 

cations whose line direction was the x -direction and which moved in 
«5 

the x -direction. Then the direction of the related Burgers vector 

was x , x_, x , in Fig. llb.c.d (we do not consider the sign at the 
<6     w     X 
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»nt). A complete investigation has to consider the nine indepen- 

dent dislocation components and the three independent directions of 

motion. Therefore, we have to investigate 27 different dislocation 

motions. 

We describe a dislocation motion in general by specifying at 

every position, x, 27 quantities N  , which mean the number of a 

dislocations (per unit length measured perpendicular to the direction 

of the line and of the motion) which moved past x in the i-direction. 

For this we assume for simplicity that all dislocations have the same 

value of b, the Burgers vector, however, it is not difficult to con- 

sider also the case in which the Burgers vectors are different. 

In the expression N.  the 

first index refers to the direction of motion 

second index refers to the direction of the line 

third index refers to the direction of burgers vector 

of the dislocation; j=k are screw dislocation, j/k are edge disloca- 

tions.  As we concluded from the consideration at the end of §1, the 

following correspondences hold: 

i 4 i -  k    glide of a screw dislocation 

k = i d  j    glide of an edge dislocation 

i / j ^ k, k / i  climb of an edge dislocation. 

i=j means a motion of the dislocation in the direction of its line 

and causes no distortion.  It is not necessary that we investigate 

this motion. 

So we recorded all 27 components of N.  .  From the vector prop- 
i jk 

erty describing the motion direction and the tensor property of the dis- 

location tensor, we conclude that N . are the components of a third- 
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order tensor, which we call dislocation notion tensor.  Furthermore, 

we write 1 » -1 etc. Therefore, the N _ motion causes the same dis- 

tortion as a N-=„, K-55 and N-_s motion. We arrange the choice of the 

positive side of the motion planes in such a manner that they are +x 

sides. Then the motions which caused the plastic distortions in 

Fig. lib to d are the following: 

b: N,=„ and N- „ respectively or also N_._ and N _- respectively 
Uli 1JZ JijS all« 

c: Nl33 m^ Mi33 *"«sPectively or also N_ _ and N_-„ respectively 

d: N.Sj and Nrv respectively or also N311 and N_r., respectively 

The specification is complete and the reader is advised to check it by 

considering the sign convention of Si.  If we let the edge of the 

The line direction of the dislocation shall be parallel to 

the boundary of the plane cf motion (after the motion) taken in the 

right hand sense relative to the normal plane. 

volume element have the length I,  then N   6g has the same value as 
ijk 

the total glide vector of the dislocations which moved through the 

volume element, therefore it has the same magnitude as the distortion 

which caused the motion N.  .  This distortion we will temporarily 
1J K 

p 
call P....  As we can see from our examples the same distortion results 

from dislocation motions which are anti-symmetrical with respect to the 

first two indices.  As mentioned above, no distortion belongs to the 

motion N .. (i=j). We get now (Kroner and Rieder [84] (6g = -b) 

x 
0ijk - - (Nijk - Vk)b (i-20) 
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»a an invariant relation between the dislocation 

■otlon and the plastic distortion. As an antisymmetrical third-order 

p 
tensor, B   has nine Independent coaponents, and therefore it 1» pos- 

A J m 

sible to replace it in the usual way by a second-v rder tensor 

C=€iJ*eik    ' &-?'lJk<jJ (I'21) 

p 
To verify these relations readily we replace 0 , in the second of 

eq. (1.21) by eq. (1.20) and then use the resulting equation 

Ptf -  - Cijk »iji b (I'22) 

for the examples b to d. 

Now we assume that the dislocation motion N   changes because 

dislocations come to rest with a constant density. The decrease in the 

number of dislocations which, for instance, moved a distance dx. with 

width dx in the x^-direction is, of course, equal to the number of 

dislocations which cut the plane element dF = dx dx„ after the motion. 

That means 

ON 

1 

ÖNJik 
and since -^— = 0 (i.e., also the moving dislocations do not termi- 

nate in the interior of the body) it follows with respect to eq. (1.20) 

that 

-E^-V {I'24) 
1 

* *'■>': :':-   ", ■(»WV_ 



In words: The plastic distortion is changed in the direction of notion 

if dislocations from out of the moving group come to rest with a density 

p 
Or .  Figure 13 gives an example rf this.  If we replace 9   in 

eq. (1.24) by B^ , eq. (I.11) follows immediately. 

The dislocation motion tensor is connected much more clossly 

with the real process of plastic deformation than the previously used 

terms. This may be its main importance.  We differentiate it with 

respect to time and define by this a dislocation velocity tensor, which 

can represent a suitable starting point for future dynamics of disloca- 

tions, e.g., it is elementary to formulate a friction law for disloca- 

tion motions, since the friction force (which finally balances the driv- 

ing force, causing a constant dislocation velocity) is proportional to 

the dislocation velocity tensor. 

§5.  The Invariant Elements of the Distortion Fields 

In this chapter we assume an infinite medium.  The distortions 

are continuous and twice differentiable and may vanish at infinity. 

Thus the following decomposition is unique: 

P        P       rP 
ß = grad s + curl t (1.25) 

ß - grad s + curl £ (1.26) 

P    P 
C - (£..,) and £ = (£. .) are symmetrical tensor fields. 

According to §3, a distortion, whether plastic or elastic, 

transforms a compact body into a compact body again if we can derive 

it from a displacement field by using the gradient.  So a plastic dis- 

p 
tortion, grad s , does not require an elastic distortion to maintain 
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the connection in the body, end so occurs without stress, leaving the 

orientation unchanged. 

T      P 
In principle, the total distortion &   = 0 + ß has to be 

a gradient tensor (eq. (1.9)), hence it follows 

,P 
curl £ : - curl £ (1.27) 

This means that the destruction of the connection caused by the plastic 

p 
distortions, curl Q  , is just cancelled by the elastic distortion, 

p 
curl £. Therefore, it seems that s is completely independent of the 

p 
functions £ , £, s. The reason, therefore, is that our consideration 

is still incomplete.  In reality, especially in a real body, and there- 

fore we assume it is also for our continuum, there is a coupling between 

P    P 
s and £ in such a way that the number of the dislocations which came 

to rest during the dislocation motion is a function of the number of 

the dislocations which were moving, and may also depend on the position. 

Such a relation would mean a restriction for the allowed dislocation 

motion as a function of position. Thus we are able to separate that 

part of the total distortion 

8 = grad (s + s ) (1.28) 

which occurred without changing the state. The meaning of s is 

obviously the plastic displacement of the points of the medium which 

P   P 
belong to the part grad s of ß . 

p 
The tensors £ and £ have not been interpreted until now. They 

are a sort of potential from which we can derive the distortions. 

In spite of this, however, s is an elastic field of displacement. If 

p 
we cancel the plastic distortion, curl £ , by the elastic distortion 
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according to eq. (1.27), and we reaove the forces which produced this, 

a partial relaxation takes place to a state of the lowest elastic 

energy, causing the material points to suffer a displacement, s. 

T 
So we can see how the total displacement s is composed of the plastic 

and elastic displacements. 

In the appendix we will show that, by further decomposition of 

curl Ci *© will get for 0 

*ij • 7i Sj " \,1 ej»n \ \ hn + 6i.1 (I'29) 

where s' s sJ + uJ and u. is a vector field with div u = 0; 
j   j   j     J ~ 

i. is a symmetric, 6  an antisymmetric tensor field,  in a 
*n ij 

similar manner, we define by the equations 

WV •»-!«!#•« (I-30' 

a vector field 

ek = eijk vi uj + V (I-31) 

where X is a scalar field.  Now we define in general the incompat- 

ibility (inc)of a second-order tensor field by the identity 

inc £ H ("€iki ejmn \ \ hr? ^ X i  x 7      (I'32) 

Its name is derived from the fact [77] that 

inc e = 0 (1.33) 

is the condition of compatibility of (small) elastic distortions e 

[86,34].  (The deformations are compatible if their incompatibility 

we 
vanishes.) As/may easily calculate, the incompatibility of a 
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symmetric tensor produces a symmetric tensor, and the corresponding 

result holds for an asymmetric tensor. 

Therefore, we cm write eq. (1.29) in the form 

0 = grad s' + inc i + 6 (1.34) 

p 
We can write 0 in the same form 

P       P       p   p 
0 = grad s' + inc ir + 6 (1.35) 

T       P 
Since the total distortion 0 =0+0 is a gradient tensor, it must 

be that 

inc i = - inc iP,  6 = - 8P (1.36) 

If we compare this with eq. (1.27), we have to notice that 

P       P  «P       P 
curl £ = inc i + <3r  + grad u (1.37) 

P   P       P 
So it is sufficient to remove the part inc i + 8 of curl Q 

P 
since the tensor grad u is unimportant for the relations of connection. 

If we write ([52], vol. 1, pg. 97) 

def s's I (7 s' + V.s!) (1.38) 

(read def as "deformation of") then the symmetric part of eq. (1.34) 

has the form 

e = def (s + u) + inc i (1.39) 

This follows from the theorem that in infinite space it is 

possible to separate a tensor field which vanishes at infinity uniquely 

by equations like (1.39) 
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and the antisymmetric part 

\i - \  *!<■ + U)J " Y" + U)i] + eij il'«> 

which we can write by using eq. (1.30,31) 

^^^■^-^•"V^ijkV (I-41) 

From the identical relations 

div inc s  0 

inc def =  0 
(1.42) 

which can easily be checked, it follows that eq. (1.39) shows the 

decomposition of the elastic deformation field into its compatible 

and incompatible part,,  Similarly, eq. (1.41) is the decomposition 

of the rotation field in its compatible and incompatible part. 

We can easily prove that only the part with X remains if we substi- 

tute u;. . for §. . in eq. (1.32). 

Every tensor of the form e.^ VX can also be written as an 
ljk k 

antisymmetric incompatibility (Appendix). 

inc 
The incompatible rotation field therefore has the form ID 

2 
vgrad X) .  Especially, notice that the compatible strains and 

2 
Another view point is: The rotation <JU. . - 8. . in eq. (1.40) 

ij   ij 

are "incompatible" with the strains def (s + u) in eq. (1.39), so we 

can also call 8., the incompatible rotation [81], 
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rotations are no longer coupled as they are in the classical theory 

of elasticity. Moreover, there are states possible in which u + s 

is equal to an arbitrary vector p and u - s is equal to an almost 

For div u = 0, we can not simultaneously prescribe the part 

of P and g derived from the gradient operation.  Anyway the part of 

£ due to the gradient operation does not contribute to w • 

arbitrary vector g. 

In no case are we allowed to interpret u as a displacement field 

u is not easily interpreted, but is similar to \,  a sort of a potential 

from which we can derive the rotation.  We also should notice that 

in eq. (1.41) the rotation of single volume elements was not decom- 

posed, but rather the rotation field, i.e., eq. (1.41) indicates in 

which way the rotation varies from element to element, ou. . at the 

point x is a rigid rotation of the volume element dV(x) as we defined 

in §2. 

The special importance of eq. (1.34) is that here the distor- 

tions which restore the connection, are shown separately in *he sym- 

metric and antisymmetric part.  If we substitute 0.. from eq. (1.34) 

in eq. (1.17), we get by use of 

curl (inc i + B) = <* (1.43) 

the basic equation which the author first derived [81], 

The phenomena which are connected with the distortion inc i 

and 6, we will consider in the next two sections. Here we will only 

count the degrees of freedom which are contained in the plastic and 

elastic distortions. There are twelve in all, namely, three per 

■'""*"'■''■ *«•'■«'•■»«« 
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P PI 
grad s and grad s and six per curl £ and curl £.  Of the last 

p 
six, there are always three for the incompatible strains Inc 1  and Inc 1 , 

p 
and three for the rotation 8 and 0. 

For we are allowed to specify three secondary conditions for 

P P 
' and *. The same holds for i  and i (Appendix). 

§6.  The Geometrie Origin of Thermal Stresses, 
Magnetic Stresses and 
Stress Concentrations 

We will now summarize the important facts of plastic deforma- 

tion with respect to the macroscopic standpoint. We imagine that the 

body is cut into its volume elements and we apply to each element by 

dislocation motion, the desired plastic (stress free) distor- 

P 
tion B .  After this, in general, the volume elements do not fit 

together, and elastic distortions (inc i + 6) are necessary in order 

that they be able to fit together again.  After this we imagine that 

all coalesce, and we remove all the forces whi^h caused the elastic 

deformation.  Thereafter, a relaxation (grad s') into the state of the 

lowest energy occurs. At the end we observe a dislocation density 

a s -  curl S . 

We can change the experiment in this way:  We apply to the 

volume element not plastic distortions by dislocation motion but a 

quasi plastic distortion, e.g., by an increase in temperature. As we 

know, for a volume element at x [79] 

» 
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BQ     -   T (1.44) 
U      U 

if «, is the thermal expansion coefficient and the reference teaper- 

Q 
ature is zero.  !k>th l'(x) and 3 (x) are continuous functions of 

Q 
position of the volume element.  Moreover, 0  is naturally a spher- 

Q 
ically symmetric tensor, so it is a pure strain, and we can write £ 

Instead of 3 .  We call 3 quasiplastic, for these distortions do not 

cau:e repulsive forces.  Now the equation 
9 

I I 
t i 

i 
t aQ • always haj a solution.  So we are able to write 0  by use of eq. (A.2) 

also in the form 
■ 

3Q -- : .   \,  vL 7 i =   v  7. * - e   c   7 7 i (1.46) 
IJ    l i  ki k  x     i  .1     lkm jim k I 

or by use of eq. (1.32) [I   * .] 
ij 

3Q = del (Rrad J) + inc ($ I) (1.47) 
I 

»here it is possible to substitute grad for def.  The second term 

causes the distortion s  to occur accompanied by a disturbance of the 

connection, after which the connection can only he maintained by an 

elastic distortion of the form  inc l = - inc (i  I).  Now we can define 

a quasi dislocation density by the equation 

ar'J  - curl 3Q (1.48) 

Q 
The state of elastic distortion which belongs to Or is then the same 

as that which was produced by a dislocation motion during which dislocations 
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Q 
of ihe density Or - a came to rest.  Therefore, in a continuum to 

which a distribution of temperature is applied we can eliminate 

elastic distortions if the dislocations of density 

ft = - efi  = ..• curl (T I) (1.49) 

are introduced.  Certainly this process is important when large thermal 

stresses occur as they do during the cooling of cast iron.  Since in 

this case it is easy to calculate the necessary dislocation arrangement, 

this is an impressive example of the practical use of the concept that 

thermal stress is considered as being caused by dislocations. 

If we bring a sample of a ferromagnetic metal, but which is non- 

magnetic as a whole, into a sufficiently strong magnetic fiald, then all 

elementary dipoles align themselves parallel to the direction of the 

field.  In many cases a quasiplastic elongation of the sample occurs in 

the direction of the magnetic field, whereas the volume remains approx- 

imately the same.  If the magnetic direction changes in the body from 

place to place, then we can perform again the thought experiment men- 

tioned above.  The quasiplastic distortion of the volume elements becomes 

then a (symmetric) deviator, since the volume remains the same.  Also, we 

can define by the help of eq. (1.48) a quasidislocation density and indi- 

cate in which way the dislocations »ill be arranged in the magneto- 

strictivly strained body to keep the elastic energy as low as possible. 

Such investigations are very important in experiments, which are cur- 

rently being carried out, designed to understand the curve of the magne- 

tization of ferromagnetic metals.  For this see [11, 155, 124], 
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ine e = T] (1.52) 

For r = 0 these «re the compatibility conditions of de St. Venant. 

In the case of temperature fields, we get, e.g., by use of eq. (1.51) 

and (1.49) [79] 

T) = y inc (T I) (1.53) 

i.e., the incompatibility field T) which belongs to a temperature fie]d 

is easy to calculate.  If T| is known however, then the associated 

stresses are relatively easy to determine (113). 

Perhaps we can illustrate the importance of eq. (1.52) in 

elasticity theory as follows: Since it was developed from eq. (1.17) 

by taking the curl from the right and symmetrizing, it must contain 

part of the meaning of the equation but the other part must be lost. From 

the relation  inc def ^ 0, we obtain the result that in the case of 

Tl = 0, the strain e can be derived from an elastic displacement field s, 

if we assume, as was previously always done in the theory of elasticity, 

that 6 of eq. (1.40) is zero.  The elastic rotation —(Vs - s ) follows 

With 6 = 0, u = con^t by use of eq. (F;3*}-(for div u = 0). 

from the same displacement field.  As we know then the displacements 

are determined by the strain with exception of a rigid rotation of the 

whole body.  In this case the eq. (1.52) are equivalent with curl 8 = 0. 

The second automatically contains the statement 6 = const, as will be 

shown in the next section.  Exactly this statement is lost, if we 

derive the equation inc e =  0 from the equation curl 0=0. 



47 

So the classical theory of elasticity is defined by the equation 

curl 6 = 0 or which is equivalent, by lnc c = 0; 9=0. 

If Tj 4  o the plastic deformation field has the fom 

P      P 
def s + inc i . The second part always causes the plastic or quasi- 

plastic distortion not to maintain the connection of the body and 

therefore gives rise to elastic strain and subsequently to self stresses. 

The existence of an incompatibility field is therefore (in any case in 

a simply connected body) a presumption that self stresses can appear. 

It is easy to show that in the region of the linear theory of elastic- 

ity the totality of the stresses which are possible in a body are 

uniquely determined by given external forces and the incompatibilities 

(Il6). 

§7. The Curvature of the Structure without Stresses 

\   • 

The fact that the dislocation causes rotations during its motion, 

was used for explaining important phenomena in the physics of metals. 

So first Burgers [12] and Bragg [10] found that the grain boundary between 

two crystallites (grains) with a small difference in their orientation 

is built up by a two-dimensional arrangement of dislocations at the grain 

boundary.  Ii we study the volume shown in Fig. 16a, for instance, a 

group of Or -edge dislocations should run through it in the x -direction 

and should come to rest along the indicated plane with a constant density. 

By cutting previously along this plane, the distortion of Fig. 16b is 

produced.  By rotating each layer through the angle 6 6 we can restore 

the destroyed connection.  Between each two layers which were separated 
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by a dislocation wall we have a difference In the orientation by the 

angle 6 8. Figure 16c shows the same for a notion of a - (a  + *„_) 

screw dislocation in JL-direction if Or  = or   The assignment now is 

to find a relation between the rotation and the density of the disloca- 

tions which come to rest. 

In the beginning we can restrict our considerations to the case 

in which the dislocation density is homogeneous. By eq. (1.51), the 

incompatibility tensor vanishes, and if also no external force is applied 

to the volume, then this is free of elastic strain altogether. In §14 

we will prove this exactly. This statement holds only for small distor- 

tions and dislocation densities, respectively, to which we now restrict 

our considerations. Therefore, in our case B. . =  8..» where 6  are 
ij   ij        ij 

the elastic (= rigid) rotations of the volume elements dV, by which the 

connection, which was destroyed in Fig. 16b and c, was destroyed. For 

the Burgers circuit, therefore, we get on the one hand [see eq. (1.15) 

and (1.19)] 

f daj -{dxi V Jjf ^ % (I-54) 

and on the other hand 

t  dx. B  = 6  dx. 8 . = - £ x   d 6 
£  i ij  £  i ij    J i   ij 

(1.55) 

as 6  d(x 8 .) = 0.  If we substitute d8  = e.  d8, , then we get J        i ij ij   ijk  k' 

for the right-hand side of eq. (1.55) 

As proof take 8  as a linear function of x.. 
ij * 
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(-€tJk f \  deR> = £ * * d6' (1.56) 

where da is the angle of rotation between two neighboring volune 

elements. Now we define with Nye [113] the (macroscopic) curvature 

tensor K ^ (K ) by the equation 

d9k » KfcJ dx£ (1.57) 

The diagonal components of K.. are twistings (screwings) of the 

x -plane, meanwhile the other components are bendings of the x.-plane 
i i 

around the k-direction, ns we can easily see, e.g., in Fig. 16. 

If we put eq. (1.57) in (1.56), we get (Stokes1 Theorem) 

" eijk f  Xi \idXl  ■ " €iik eimn # dFm V*i V 

£    €    rr dF K 
ijk Ami J£  m kt (1.58) 

since for a constant dislocation density K . is constant and 

V x. =6 .. After comparing with eq. (1.54) and with the decomposing 
n l   ni 

formula (A.2), the relation, which was first derived by Nye [113] 

using another approach, between dislocation density and curvature of 

structure follows 

a4 . = 6  K  - K.., (1.59) 
ij   IJ kk   IJ 

while the inverse is 

K. . = - 5. . a  - a. ., 
ij  2 ij  kk   ij 

(1.60) 

This equation also holds for small dislocation densities and curva- 

tures, respectively, i.e., the change of the orientation do must 

be small relative to 1 over the distance dx.. 
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For further discussion, we assume a variable dislocation 
now 

density, and we call the relative angle of rotation between the volume 

elements d6, for a reason soon to be obvious, 
k 

If we now perform, analogous to the Burgers circuit, a closed 

circuit C, along which we add the rotations 66 and dö to obtain 

Di - i d6i * t dXj Kij (I'61> 
i 

and by Stokes' Theorem I 

D = - J7 (K x V)-dF (1.62) ; 

"      '*       " I While we will not perform the calculation in detail here, it follows 

from eq. (1.60), (1.18), and (1.51) ; 
i 

K x V = (e   V K,.) . - f\ (1.63) § 
ijk k ij 

« 

Therefore, we have for infinite planes 
i 

A D. = T|  AF. , (1.64) 

which we can regard similar to eq. (1.14) as defining equation for T] . 

According to eq. (1.63), d8. in eq. (1.57) is then only an 

exact differential if T) = 0, meanwhile for dg , the analogous con- 

clusion is a -  0. Also, in the case of T) = 0, a continuous vector 

field 6 exists, which describes that part of the rotation of the « 
s. 

structure (the "part of the grain boundary"),  which depends directly . 

on the dislocations, and it is identical with 6 of eq. (I.31)(for ^ = 0). , , 

For this relation also see §23. i 
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This we can see from our previous investigations of the problem: do 

were the rotations which would restore the connection which was dis- 

turbed by the dislocation motion. The same holds for d6 . The curva- 

tures of the structure related to this occur without stresses because 

there are no external forces and incompatibilities (§14). 

The tensor K obviously does not contain the elastic rotations, 

(Vs. - V s )/2, which depend on the curvatures. The curvatures of the 
i J   J i 

structure actually observed can be described with another curvature 

tensor, which is defined instead of eq. (1.57) by 

dm.  = K.. dx. (1.65) 

However, with a continuously varying dislocation density a,  also 0 and 

0), are continuous functions of position (for 0, at least in a simply 

connected body, must be unique), therefore duu. is a total differential. 

This, however, holds only for small rotations, see for this Bilby and 

Smith [51.  If there are no elastic deformations K.. become identical 

I with X . (then, however, V.S - V.S. = 0) . 

Equation (1.64) states that the Burgers vector b has the same 

relation to the dislocations as the rotation vector D has to the incom- 

patibilities.  Look again at Fig. 15.  The original planes of motion 

of the dislocations will now be dislocation walls with a constant dis- 

location density in the plane in the manner of those of Fig. 16. 

Taking a circuit along the boundary of the plane F, we cut dislocation 

walls, and we always add the relative rotation of two volume elements. 

Then, however, the dotted dislocation walls do not contribute mything, 

since they were cut twice but in opposite directions;  If we imagine 
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that we cut a single plane along the dislocation walls, then both of the 

cut edges would be spread by the angle of rotation d6 . With this 

approach we get directly a method of measuring the incompatibility of 

a state of stress. We cut a thin as possible closed ring, which repre- 

sents the boundary of a (macroscopic) plane element AF . Then we cut 

this ring open and measure the relative rotation of the cut edge which 

occurs during the relaxation. The rotation vector is AD , from which 

TJ  follows by eq. (1.64). 

For the following reason the ring which is cut out should be so 

thin as to define effectively only the related surface AF..  For thicker 

rings there is an additional strain of the cut edge, which interferes 

with the measurement.  In practical cases we will never measure a body 

in this way.  However, we can get a qualitative impression of the 

"average of the incompatibilities" and therefore of the state of the 

self stresses (see Chapter II), if we carry out this measurement on 

several macroscopic planes F. 

The problem of measuring the internal stresses in the interior 

of a body is presently unsolved. See for this Reimer1s [175] work men- 

tioning the magnetic method, which is applicable in some cases. 

From these considerations we approach Volterra's distortions of 

the second kind (Si).  Figure 17a shows a cylinder into which only one 

dislocation wall penetrates as in Fig. 15.  Around the boundary of this 

wall a hollow torus may be removed.  Then «.he hollow cylinder is in a 

Volterra state of distortion o.f the second kind.  If we cut open the 
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? 
i 

i 

! 

cylinder along the dislocation wall or also along another arbitrary 

plane, both of the cut edges suffer the known discontinuity of rota- 

tion, i.e., the state of Fig. 17a can be produced from that of Fig. 17b, 

which is without stress, by bending together and welding.  In contrast 

to previous opinions, the singular plane of the rotation jump can be 

found at any time afterwards by experiment.  In the case that the body 

in Fig. 17b is a single crystal, it is evident that we can find at once 

the jump of the orientation in Fig. 17a by use of x-rays (in many cases 

much easier).  But this is not possible for polycrystals even with more 

1 
effort. 

See for this also the discussion of Nabarro [110], p. 349. 

Therefore, a complete description of the state of the Volterra 

distortion of the second kind requires an indication of a singular 

plane, which we may find in any way. The occasionally used nomenclature 

"elementary distortion" belongs in our opinion only to the state of the 

first kind, which is consistent with the fact that we can produce each 

2 3 
state of the second kind by a particular arrangement of dislocations. ' 

As we know, Volterra used the word 'distortion in a slightly 

different context. The above-mentioned statement would be read: The 

elementary state is that which is caused by a dislocation. 

3 
fhe results which are related to the incompatibilities were 

found by the author, perhaps first by Moriguti [103] and also by 

Eshelby [41], 
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$8.  The Conditions of the Mounda?y Planes fur the Distortions 

Any boundary surfaces of the experimental body have no been 

considered previously.  This ve will remedy now.  We get at once the 

conditions associated with the boundary surfaces if we take in eq, (1.11) 

and (1.17) instead of the curl operation the two-dimer.sicnal curl and 

instead of the three-dimensional dislocation density Or the dislocation 

density of the plane ä.  If we call the boundary surfaces 1 and 11, and 

if u - (u.)  is the dimensionless unit vector of the boundary surface 

in the direction of 1 to 11, then we get from eq. (1.11) and 0.17) 

Equation (1.67) was formulated first by Bilby, Bullough and 

Smith [3],  In many cases these authors consider a two-dimensional 

dislocation arrangement as an entity called a "surface dislocation" 

in contrast to the normal line dislocation.  In other papers quoted on 

page 113, these authors mention different applications of the theory 

of surface dislocations. 

n x 0P|TT - n x ePL = - Q (1.66) 

n x S|n - n x Sjj = 5 (1.67) 

where, if we want, we can take the first equation also as the defining 

equation for a.  However, in many cases it is useful to define the dis- 

location density of the plane 5  in the sense of Schwartz's distri- 

bution calculus [131] by the equation 

Of  = 5  6(n) (1.68) 
ij   ij 



'I 
: 
i 

where the parameter n characterizes a group <>f »lanes in such a way 

that n  0 is the boundary plane.  ;(n) is everywhere zero except 
<X 

for n  0, where it goes to infinity in such a way that  i -(n) tin ~ 1. 

Or . is independent of n. 
t.1 

From eq. (1.68) it follows that 

a . dn - f 5.. 5(n) dn = 5... (1.69) 
11     il   ij l ] 

Now we consider an infinite body in an initial state without 

dislocations. By any external forces dislocations may be developed, 

and they may move. Here we distinguish three cases: 

The first group of dislocatons must vanish or be otherwise 

annihilated at the conclusion of the (continuously distributed) motion. 

This annihilation can be carried out in the infinite body by 

combining dislocations with opposite sign. 

The second group should come to rest with a continuous density a in the 

body.  The third group should also come to rest, however as a two- 

dimensional density 5, by which the two regions I and II of the body 

may be bounded. 

At the end the  connection of the body should also be r.^in- 

tained at the boundary surface.  This is required by the boundary con- 

dition 

sT|H - s1^ = 0 (1.70) 



.uf total il isplaceim 's as 111 sect inn 2.  *"e can differentiate this 

equation in :.'ie bound.uy surface, and we only lose one irrelevant 

constant.  The equations 

n x 7 s'j   - .. x V s |  = 0 (1.71) 

and   therefore practically equivalent   to eq.   (1.70).      Instead of   (1.71) 

we write with  eo     (1.9) 

n x 0  |       - ii x 0  |j  =  0 (1.72) 

e.g., we obtain for a location where n points in the x -direction 

>at 301, 0_o, 3  :.nd 0   0_, 0, that 3  , 0 ,  p  :md p  , B   P  must be the same on both sides 

of the boundary surface.   Equation (1.72) is the sum of eqs. (1.66) 

and (1.67).  Also it follows, formally, of course, from eq. (1.8). 

The same idea led us previously to eq. (1.8). 

Again we consider the three dislocation groups and assume that 

they occurred consecutively.  The first group, of course, produced 

P 
a plastic distortion grad s , which is continuous in the whole body. 

P       P 
The second group causes a distortion grad s + curl £ , which is also 

p 
continuous in the whole body (that this contains a part grad s 

follows from the fact that the distortions which were caused by the 

2nd group also depend on the path of the dislocation). 

The distortions depending on group 3 are discontinuous on the 

boundary surface, but are continuous in the partial bodies I and II. 

Which shape do they have? The dislocations are neither annihilated 



in thf body nor -nrne  to rest.  Then we will remember the well-known 

fact that the decomposition of the tensor field 

P       P       I 
3   grail s  4 curl ' (i.73) 

is not unique in a body with one or more boundary surfaces, but there 

is a distortion which can be described either as vector gradient or 

p 
as a curl tensor.  If we write it as grad s , then since it is simul- 

taneously a curl tensor, it follows that, 

P     P 
div grad s   A c = 0 (1.74) 

In reverse, we can, of cou'se, describe every gradient of a harmonic 

vector field as a curl tensor. 

From *Iiese considerations we can assume that we can write the 

boundary conditions in the form 

1 s An exact proof can be derived in addition to S4. 

n x 7 sj|   - n x V s^|  = - £ (1.75) 

or if we take 

« = fain " fall (I'76) 

as the plastic displacement jump in the boundary surface, we also can 

write it in the form 

n x V g  = - 5 

This equation tells us that dislocations must be on a surface and in 

what arrangement on the surface which had a nonconstant displacement 
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lump tf.  F»r application this arrangement is very important.  It 

applies also for large distortions, as does eq. (1.17), if we relate 

all values to their initial condition v^lO).  The boundary conditions 

(1.66) and (1.67) become very simple, if one of the partial bodies 

becomes infinitely soft (air) or infinitely rigid.  In the first case 

the boundary conditions are full *led identically, as we easily can see 

from (1.70).  In th^ secon . ca.se, one term of the sum cancels in 

eq. (1.66) and (1.67), since the distortion is zero in a rigid medium 

(in a rigid medium it is obvious that no dislocation can move).  In 

reality there is no rigid n.edium, but it often happens that, e,g., 

a soft metal contains an inclusion of hard metal, the deformation of 

which we can neglect.  In this case the boundary value problem which 

must be solved is greatly simplified.  Notice i-hat the situation for 

stresses in the case of known boundary conditions is just opposite 

(they are fulfilled identically at a boundary surface with a rigid 

body). 

§9.  The Boundary Surface Conditions for the Strain, 
T#o-Dimensional Incompatibility Distribution 

In 38 we assumed that the spatial density or of the dislocations 

which came to rest is a continuous function in the whole body. This 

restriction we will drop now, by allowing an additional jump of a 

in the boundary surface.  We will easily understand that this leads 

to a jump in the plastic displacement; e.g., it is possible that in I, 

edge dislocations climb by enlarging the volume of I. meanwhile in II 

a dislocation motion occurs without change in the volume. The related 
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displacement jump similarly would be described by 

In §7 we emphasized the importance of the incompatibilities with 

respect to the self stresses.  We may expect that two-dimensional 

distributions of incompatibilities also may play a role in determining 

self stresses.  Not only the surface dislocations contribute to them, 

but also the jump in a.  To study this, we take the case in which plastic 

p     p 
distortions 3T and B  are continuously distributed in I and II, where 

the passage between I and II can be arbitrarily discontinuous.  We assume 

p 
that the function of B which is continuous and has t^o derivatives is 

p 
continued in II, as well as B  into I. We write the distortions, sum- 

marizing for the whole regions I and II 

f = !l + (!ii"ei) 6°(n) <I,79) 

where 6°(n) is Heaviside's step function, i.e., 6°(n) = 0 in I and 

1 in II.  We will use the following rule for the calculation [131] 

^S°(n) = &\        J^Oi) = 62(n) 

1 2 
where 5' is the Dirac Delta function and 6 is the distribution which 

describes a doublet function (Dopplebelegung). As all 6 depend only 

1      12 
on n, it further holds that 70° = n6 and 76 = n6 .  Finally, if f 

is a continuous function c* n and eventually of two other coordinates, 

we obtain, T— (f6 ) = f6 .  In the following, we derive the asymmetric 

incompatibility, 

H =  - 7 x BP x 7. (1.80) 

I 



60 

Initially we have 

P        P        ^P^P PPT 
- -or = V x B ,- 7 x 3 + 7 x (B -Bj)6° + n x (Bjj-Jg^ß   (1.81) 

In cases of doubt the arrow indicates which term was differ- 

entiated. 

The first two terms are the space density and the last is the surface 

density of the dislocations according to §8.  For further differentia- 

tion of the last term, we will use a decomposition into parts which 

allows differentiation perpendicular and parallel to the surfaces: 

-v  n    n 
7^n-^+7,  7=-nx(nx7). (I.»2) 

Then we get 

H=ax7=-7x!3*>x7-7x (ßf, -ß!*) x 7 6° 
~  ~ ~I ~II ~I 

lp  lp       i    ppnl 
- [7 x (B„- B,) x n + ri x (< -B,) x Vl 6 

~Il ~l   ~  ~   .II ~l 

- n x (BJJ-3J) x n 62 (1.83) 

The first two terms represent the space, ve  next two the ordinary 

two-dim«Tsional incompatibility density.  Furthermore, the first part 

of thi- is caused by the jump of the dislocation density Of, and the 

second follows from the surface density Q.     Finally, the last term 

corresponds to a two-dimensional doublet of incompatibilities. 

If we carried out the operation first from the left-hand side 

instead of (1.81) so we would get a factor of 6  in eq. (1.83), 
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1P ip. lp lp    n 

n x O  -0 > x V - V x (gjj-Jgj) x " (1.84) 

otherwise eq. (1.83) would be the sa:ne.  We can show that this expres- 

sion is identical to the coefficient of 5  in eq. (1.83), as it must be. 
n 

(For it is n x 3 x V = V x ? x n, as we easily can show by writing 
n 
V = v d ?v + w a aw, where v and w are the principal curvature direc- 

tions.  Therefore an/äv ~ v and on/dw ~ w). 

For that part of H which lies in the boundary surface, we now 

obtain 

H 61 + H 62 (1.85) 

with 

H H - ine (0JJ-0J).  H = - inc (B^-ßj). (1.86) 

where the operations inc and inc are defined by 

        i      A  i  n 
inc ßaVxßxn + nxßxV (1.87) 

inc ß s n x ß x n (1.88) 

Therefore it  is obvious  that   (see eq.   (1.51)) 

H = ttxn  |n  -9xn   Ij + OlxV  ,       H = a x n (I. 88a) 

Of course it holds that inc (ß  - ß ) = 0 and inc (ßT - ßT) = 0. 

The conditions of the boundary surface can be written as 

inc (ßn - 0j) = H ,   inc (ßn - ßj) = H . (I. 88b) 

We can easily show that 

(inc ß)S = inc ßS,  (inc ß)S = inc ßS. (1.88c) 
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-S S 
With 3 = 6    and H  • v,  you get then 

inc (eH - «j) inc (c  - e ) (1.89) 

These are the boundary conditions for the strains.  From eq. (I.88a) 

the important practical relations follow, 

W = (ff -x n J  - <x x n  Jj)S + (Q  x V)'°: "= (Ox n)S   (1.90) 

The eqs. (1.30) and (1.51) show, after a simple calculation, whether 

a body has or has not self stresses under the given conditions (dislo- 

cation density or applied distortions).  We easily can show, that in 

the region where the linear theory of elasticity holds, with given 

", 7] and 7) the self stresses are determined uniquely (il4).  In par- . 

ticular the self stresses vanish with simultaneously vanishing T|, 7) and 7] 

It may be possible to calculate relatively easily the self stresses, 

which belong to the given incompatibilities T[, T] and 71, (§13-15).  That 

is why it should be mentioned at this point that we easily can formulate 

the First Boundary Value Problem (1BVP) of the theory of elasticity 

(boundary displacement given) by "if, Tf given."  Then we imagine that 

the edge dislocation is maintained by the fact that the body adheres to 

a rigid surrounding, and then we can interpret the edge displacement a 

as the displacement jump -g as in §8. From the assumed g the surface 

dislocation density is given by -n x Vg, and from eq. (1.90) the asso- 

ciated tj ari tj fr jow in a simple way. For the solution of the problem 

"71, Tf given" see §15. 

As the only application we take the case that along a plane 

boundary surface between two materials, the temperature, which is 
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constant in each, has a jump A"'  T - T,.  Then we liave to substitute 

Q 
only 3  according to eq. (1.41) into eq. (1.88), and aftor a simple 

Q 
calculation we obtain (because of the symmetry of 0 ) the surface incom- 

patibility f\,  while f]  vanishes because of the constancy of 8. An 

obvious explanation of the doublet of the incompatibilities T) follows 

in §23. 

slO,  Some Problems of Large Distortions 

As we mentioned during the derivation of the geometric basic 

equation, it holds for arbitrarily large distortions if we refer <*.. 

and 3 . to the initial state.  Perhaps we imagine some resistance which 

initially prevented the body from distorting during the development of 

the dislocation and its motion, respectively.  The distortions which 

the volume element suffers after removing the resistance obviously can 

be related completely to the initial state.  Only if we interpret it 

in this way does the geometric basic equation have the simple form 

(1.17). As we see at once, the distortions which are defined by 

da. = 8V. dx. (1.91) 
J   ij  i 

referred to the initial state are additive (but not the strain and rota- 

tion by themselves).  If we sum over a number of sequential distortions 

B ., then we obtain 
ij 

d A4 = E d a% 2(8V. dx^) = (E 0% dx, (1.92) 
J  v   J  v 1J  x v ij   i 

where the last equation only holds, if we always take for dx. the 

(constant) distance of the respective point in the initial state. 
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In this case also the distortion is composed additively from the strain 

.mil rotation, i.e. , 

Sij 3 €ij + *ij (I-93> 

»here, as *e know, ,   has the form [34] Vol. I, pg. 78, [86] 

x.  = (1 - cos q)(k.k. -6..) + sin q tt..   k, (1.94) 
ij i J   xj ijk k 

if k  is a unit vector in the direction of the rotation axis and q the 
i 

magnitude of the rotation angle.  A given distortion can easily be 

decomposed according to eq. (1.93), since e  is symmetric and x      is 

completely determined by its antisymmetric part.  Then eq. (1.93) is 

not a decomposition of the tensor 8  into its symmetric and anti- 

symmetric part.  So it is understandable that all equations in which 

c  is assumed to be the symmetric part and x   .  to be the antisymmetric 

part of 8  , hold only for small distortions.  The symmetric equations 

of incompatibility are affected by this in particular through f], " and T), 

while the asymmetric equations of incompatibility as eq. (1.51) also 
not 

hold for large distortions.  However, their importance has-been clarified 

sufficiently till now.  If we relate all values to the final state, then 

we get a complicated form for the geometrical baSic equation, which we 

will derive in Chapter IV.  However, on the other hand, the statical 

basic equation (condition of equilibrium of all forces) assumes its 

known simple form only in the final state, while it becomes very compli- 

cated for the initial state.  This means that we cannot use a simple 

form of the geometrical and statical basic equation simultaneously. 

There is an important exception: When the rotations UJ.. (and 

especially their grain boundary parts 6 ) are large, but the strain 
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e.  small. This case is of such great importance because the rotation 

8    occurs without stresses, so there is no energy used and the 

This statement is only approximately true in the crystal (§23) 

in contrast to the continuum. 

dislocations arrange themselves primarily in such a way that €  is as 

small as possible, whereas x . may be larger. 

However, in the case of pure rotations 8 . the total distor- 

tion 9. . + 9. , - o (see §5); i.e., all volume elements remain in their 
ij   ij 

2 
place, only the orientation of the lattice is rotated.   If there are 

2 
This case corresponds to Fig. 16c, but not to Fig. 16b, where 

the layers 5x did not suffer a pure (plastic) rotation, but were simul- 

taneously plastically strained, which is the reason for the total dis- 

placement of the layer.  If we reestablish the connection with elastic 

rotations, then the body seems to be bent, whereas it is (in the case 

of small plastic distortions) still without stresses. 

simultaneously small strains e  , then the volume elements only suffer 

small displacements, and it is not necessary that we distinguish between 

the initial and final state, e.g., the conditions of equilibrium remain 

in their simple form if they were taken in the coordinates of the initial 

state.  In the next section we will show how we en decompose the dis- 

location density into a part which causes the rotation 6  and one which 
* J 
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causes the strain e  by calculating the rotation of the lattice. 

To determine the elastic strain and the self stresses, respectively, 

is only a problem of the linear theory of elasticity. 

§11.  Determination of the Distortions of 
A Body Containing Dislocations 

The main problem of the theory of dislocations is to calculate 

the elastic distortions, ?<%lf stresses and rotations and curvature 

of the lattice, respectively, corresponding to a certain distribution 

of dislocations af a. a,  a are not entirely arbitrary functions of 

position since they must satisfy the condition that it is not possible 

for dislocations to end in the interior of a body or at the boundary sur- 

face.  However, dislocations a,  which are in the boundary surface, may 

move out of this and contribute in this way to the space density a. 

Equation (1.18) 

7t Of  = 0 (1.95) 

is a necessary and sufficient condition for the dislocation a not 

to end. Additionally, we have for each boundary surface the equation 

n _ .        . 
V a  + n (a     - a    ) = o (1.96) i ij   i ij ' II   ij 'r i*.«"j 

which says that where the dislocations 9  have divergences, the dis- 

locations Of meet a boundary surface and join it. 

1   n 
For 7 see eq. (1.82), 

If we substitute in this equation a = n x (0  - 9 ) and a = v x ß, then 

it is satisfied identically, which we can take as a proof for eq. (1.96)» 
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The given dislocation distribution must always satisfy the conditions 

(1.95) and (1.96). 

The simplest problem in which Or and Or are important is that 

of a body which adheres to a rigid surrounding.  We will restrict the 

following considerations to this (at a free edge 9 = 0). 

The above mentioned problem can be solved at present for small 

distortions most simply by first calculating the stresses (and so also 

the strains) and then the rotations. For this we have to calculate the 

incompatibilities T[, 1\,  Tj from or, 5, which is very simple according to 

19. After calculating the stresses belonging to 1\,  If, «| we get the 

strain e from Hooke's Law.  If we now write the basic equation (1.17) 

in the form 

curl uu = a - curl 6 (1.97) 

then the right-hand side is now known.  So after an easy calculation 

eq. (1.97) becomes 

6, . 7 üB - V. u). = (* - curl €). . (1.98) 
kt    m m   X k   ~       ~ kZ 

For curl <JU we can write «. ., V m . = e, ., €. . 7 uj . 
kji J Ü   kji ixm j m 

(1.98) follows according to the decomposing formula (A2). 

and by contracting 

2 V -x = (or - curl t) (1.99) 
m m   ~        mm 

If we substitute this in eq. (1.98), we get 

7i '«"u = S 6-«<* " curl «>«■« - <• - curl c). , (1.100) x k  2 k* «.      ~ mm   ~      ~ kX 
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where the right-hand si:, is p:til a known function.  By a simple inte- 

gration we obtain from this the rotation of the structure up to a 

constant. 

It is remarkable that the BVP which is to be solved for the 

stresses contains the form "n    u given" initially, see 19. 

Now we will describe a method for calculating the rotation of 

the structure before determining the stresses, which is presently 

derived only for infinite bodies [81], however it may be possible to 

extend it without much trouble for finite bodies. The starting point 

is the basic equation in the form (1.43) 

curl (inc i + 6) = a (I.101) 

It is easy to show that (curl inc i)  vanishes identically because 

inc i is a symmetrical tensor.  Thereafter it follows similar to before 

(curl inc i> . - V. ft= or  -1° bt*i (1.102) 
~ kl       * K   k   2 mm ki 

The left-hand side is (for small distortions) according to eq. (1.60) 

equal to minus the curvature tensor K ..  By taking the rotation from 

the right formerly we obtained T), see eq. (1.63).  Now we take the 

divergence from the right where the first term vanishes (since 

inc i 3 V x i x V): 

A 6 = V (I 6.  Of  - or J (1.103) 
k   x 2 kx mm   kx 

Here the right-hand side is known.  8 follows by integration, unde- 

termined up to a harmonic vector. The lack of uniqueness arises from 

the fact that the decomposition of 8 into grad s + curl £ in a finite 
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body is not unique; Moreover, we can add an arbitrary part of tht dis- 

tortion which is related to the surface density a,  in the form grud s 

or  curl £. On the contrary in the infinite body 6 is determined 

uniquely by eq. (1.103) (assuming or vanishes at infinity). 

L As mentioned in the discussion following eq. (1.96), a rota- 

ion tensor is already determined by its antisymmetric part.  So the 

integration of eq. (1.103) gives after a short calculation the rotation 

I 
i tensor with 0 as antisymmetric part, which we will call 8.  This is the 

I 
grain boundary part of the rotation of the structure.  So it is 

i 
€inc = inc i + 6 - 6 (1.104) 

inc 
where e   obviously is the incompatible part of the strain.  The basic 

f 
equation assumes the form 

! 

curl ein" = Of - curl 9 (1.105) 

s 
where the right-hand side is known.  Then we can calculate the incom- 

i 

5 _ 
patibility tensor T\  which belongs to the elastic deformation e, by 

I 
taking a further curl from the right, which permits the calculation 

i 

• of the stresses in a simple way if e is small.  At least in the case 
j 

of infinite bodies, this method allows the determination of the strain 
\ 
I from the dislocation density if the rotations are large and the strains 

• 1 small.  During these investigations we no longer need to distinguish 

I between the initial and final state. 

We did not consider the case where the component ^1
s
i - V<S4^/2 

of UK., is large.  This case is known from the ordinary theory of elastic- 

ity.  See e.g., Truesdell 1x53], who mentions the methods which »e then 

have to use.  We will not add anything to that there. 
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The case of large rotations and small strains cannot be treated 

according to the first me mod. The symmetric part of the rotation 

tensor, however, contributes to the values T\,  Tf, *, which were deter- 

mined from 9 a by the use >f the formulas of 19, and we are not 

allowed to neglect this part relative to the strains for large defor- 

mations. In eq. (1.105), however, the initially calculated part of 

the rotation tensor is considered exact. 

The particular case investigated above is at least as impor- 

tant as the case of stresses in connection with large distortions, 

which has not been treated. However, during metal manufacturing, we 

often find plastic deformations of 10 and 100%, but these must be 

P P 
mostly in the form of grad s . Deformations of the type curl £ cause 

simultaneous elastic distortions, curl £, the symmetric part of which 

cause stresses. With the relatively weak forces with which we deform 

plastically, we never can produce elastic deformations of 10 and 100%; 

i.e., in most cases we can consider the strain part of curl Q  as small 

and so also that (e) of ß. 



CHAPTER II 

DISLOCATIONS IN THE CONTINUUM:  STATICS 

Preface 

Elastostatics is the theory of the forces which are applied to 

a medium, and the problems which are investigated by this theory espe- 

cially consider the calculation of the internal forces (stresses) in 

a body which result from any external sources.  In our considerations 

the sources are mostly dislocations, also quasi-dislocations, accord- 

ing to 16.  In the previous literature we will find almost entirely 

calculations which investigate singular lines of dislocation or at 

most perhaps calculations about two-dimensional arrangements of dislo- 

cations.  We can treat these problems comprehensively with methods of 

the classical theory of elasticity.  The reason is that the elastic 

strain field has the simple form e  = (v\s + V s )/2 beyond the 

dislocation as in the classical theory oi elasticity.  However, in the 

case of dislocations which are distributed three-dimensionally in the 

whole body it is not possible to derive the elastic strain from a field 

of displacements, and in principle a new method is necessary, e.g., 

for calculating the self stresses a     which belong to a distribution 

of dislocations a...  Of course, also in a body with dislocations, the 

conditions of equilibrium of elastostatics must be satisfied, which 

can be written in the form 

div a = 0 (II.1) 

71 
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when there are no body forces. The equation states that the tensor of 

self stresses is a special tensor, for it is a tensor of incompatibility 

a = inc x_ (II.2) 

which follows at once from eq. (1.42).  The symmetrical tensor 

X = (XJJ) is called "2nd order stress function tensor/' since its 

2 
components are the stress functions of Maxwell and Morera.  In 

Equation (II.2) was written first by Beltrami [161] but investi- 

gated no further.  See, for example, (II.2), also Finzi [43]. 

2 
The addition "2nd order" should remind us that in order to get 

stresses, we have to differentiate the stress functions twice. We need 

this addition sometimes to distinguish these stress functions from others 

as we will see later. 

contrast to previous opinions, stress functions are also useful aids 

for three-dimensional problems of the theory of elasticity. Moreover, 

in the case of three-dimensionally distributed dislocations, where the 

method based on the displacement field fails, stress functions are 

necessary. But e should not only consider them as a convenient aid 

to calculation, for their role in the  continuum theory of dislocations 

is of profound importance. This can be clarified best by the remark 

that the stress function tensor is the analogue of the often used vector 

potential A in electrodynamics. By its use we satisfy the Maxwell 

equation div B = 0 identically; in a similar manner the conditions of 

equilibrium (II.1) are satisfied by the use of the stress function 

tensor. 
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i 
■ 

\ §12 The Stress Function Tensor 

Usually we define the stress tensor a by the differential form 

' rtpJ = °ij d Fi' (H.3) 
i 
i 

) 
where dp, is the force which is applied on the cut surface dF. if 

J i 

no displacement with respect to the cut should occur. 

i 1 
In contrast to isotropic bodies, in a crystal asymmetric stress 

i 

tensors also play a certain role, which we will consider in 319.  In 

all the other sections we assume that the stress tensor is symmetrical 

in order to avoid useless difficulties. However, it is useful even then 

to maintain the order of the indices defined by eq. (II.3).  (The 1st 

1 index shows the surface element, the 2nd the applied force.) 
X 

I 

Time independent continuum mechanics of solids, as far as we 

\ 
consider the state of the body, is governed by the equations 

\. 

| curl B_ = a (II.4) 

div S. = - 5 (II.5) 

and in addition we have the equation of energy density 

j e = hijeij <"•» 

p 
j The plastic deformation grad s_ , which does not change the state of 

the body, is not contained in these equations.  In addition to 

eq. (II.4) to eq. (II.6), we have the constitutive equation, for which 

■'. ■ 
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we always take Hooke's Law 

°ij ' Cijk£ ekl (II'7) 

As mentioned in 111, generally we can consider it to be satisfied 

with metals even for large plastic deformations. 

c..,,  is the Hooke's tensor of the elastic moduli with the 
ijkx 

symmetry properties 

cijkl = Cjikl = Cijik = ck/ij (II,8> 

In the case of elastic isotropy, we have 

cijki " X 6ij \l + *(6ik 6Ji + \t V ' <"•» 

where \,  \L are the Lame's constants.    The tenser of the elastic 

coefficients ^      ., which is reciprocal to c  .   , is del'   led by 

c**^i 8i,#     = k <6.    64    + 64    6.. > (11.10) ijkl   kxmn     2     im   jn        in   jm 

See,  e.g.,   [34],  Vol.   Ill,  pg.  60. 

For isotropy it holds 

sijki = ^6ij6ki + ^(6ikV + 6uV (Iiai) 

with 

X'=  ÜZ2)G /. (1/4)G (n#12) 
—  m + 1       c 

where G = (j,, the. shear modulus, m is the Poisson's ratio.  Then the 

Hooke's Law takes the form 
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"° «y ■ ffy " 5T akk V    aU = 2G(Vi + S3 '«* V (II'13) 

We showed in §6 that it is easy to calculate the incompatibility tensor 

which belongs to a distribution of dislocations.  So we now consider 

eq. (1.52) instead of eq. (II.4) 

inc € = J (11.14) 

In this the rotations of the structure are initially omitted accord- 

ing to §6. Now the conditions of equilibrium are identically satis- 

fied by the stress function (II.2) and it is unnecessary to consider 

them further.  In Cartesian coordinates, eq. (II.2) can be written 

^22  a%3  2ii33_ 

3       2 

2 (11.15) 

äXio  dXoo  äx,,\  ö X, 
= - -1- (-       12 +  23  "*31\  ° *33 

12 "  9x \ dx    äx  + ox /  dx dx 

in addition to these we have the four equations obtained by cyclic change 

of the indices.  If we take X-ii = X29 = Xo- = 0, we have the well-known 

equation of Morera [102]; with X,0 
= XOQ = X01 = 0, we obtain Maxwell's 

equation [99] if we assume d/dx = 0, i.e., two-dimensional state of 

stress, we will get from eq. (11.15) 

*\s b\s h\s 
ail = T2"'       C22=-—T>       G12 = äx7^; (I1,16) 

ox dx 1       2 
2 1 
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°23 * "srr aT-+ ar-J •   a3i= sr r ar~+ ärr^ (I1,16} 

*2 a2 >2 

0 Xll      * X22      ,    *X12 

2 1 

Equations (11.16) exactly represent Airy's stress function for a two- 

dimensional problem of stresses.  If we set the terms in parentheses 

in eqs. (11.16') equal to the function $_, we have the well-known stress 

2 
function of torsion.  Notice that every stress function \      appears 

In most cases X = ~X„ is called Airy's stress function. 

2 
See, e.g., Love [95] or Biezeno-Grammel [1]. 

only in one of the three lines (11.16), which means that the related 

states of stress are independent of each other, at least with respect 

to the equilibrium conditions. 

Maxwell [99] and Morera [102] showed that it is possible to 

describe with their functions every state of stress by div a = 0. 

That the symmetric tensor x_ has only three degrees of freedom is caused 

by the fact that according to eq. (1.42) X = &ef q contributes nothing 

to a . Therefore, a stress function tensor of the form def q_ is called 

"tensor of the zero stress functions" [126].  So we can subject the 

tensor x_ to certain secondary conditions; those of Maxwell are 

X12 = X23 = X31 = °; th°Se °f Morera' xn = x22 = X33 = °' bUt in 

all rases we first have to prove that these secondary conditions are 

"permitted." We say a secondary condition is permitted if it is 
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possible to describe every arbitrary state of stresses which satisfies 

the equation div o = 0 by use of the totality of the stress function 

which is restricted by the secondary conditions. 

The conditions of the equilibrium are fulfilled by the stress 

function. Further, the conditions of compatibility place additional 

restrictions on the stress function; we will obtain those if we substi- 

tute o of eq. (II.2) into eq. (11.14) and use Hooke's Law (II.7) 

inc[sijkjt(inc*)>ia]=T, („.„) 

It is not worth while to write these equations in detail. Even in the 

case of Maxwell and Morera they are very complicated; therefore, these 

functions are never used. 

For the following treatment of eq. (11.17), we define— 

restricted to elastic isotropy—the symmetrical tensors %..t f\ii  hy 

the equations 

2G <j " Xij " mT2 Xkk V Xij = 2G(Xij + m^T Xkk V       (Iia8) 

Ki - 2G% + m^r \k V'2G \j ■ Ki - mT2 Kk 6ij (II-18'> 

With the secondary condition 

V4 x' = 0 (11.19) 

The equations (11.17) get the simpler form [77] 

or simultaneously 

M x     = T|y (11.20') 

as we will show now. 

" "*•■- '-">**«*> 
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First, by use of the formulas of decomposition (A.1) 

\|= <lnc *\U ' " «jki %» *k *« *in 

' A cij " (Vi 7k €kj + Vj \ €ki> + \ 71 \l 6ij 

+ Vi *J ekk * A «kk 6ij      (II'21) 

and by use of the Hooke's Law (11.13) and the condition of equilibrium 

V a.    = 0, it follows easily 

La     + -2- (V V a  - A a  6) = 2GT1 (11.22) 
ij  m+1  i j kk    kk ij'     ij l    ' 

These equations are known in the case of T|  = 0 (from which it follows 

that a     = 0) as the Beltrami's equation. Now we let a      = (inc X4H) 
and 

assume that these equations are written in a form similar to eq. (11.21) 

and substitute \      according to eq. (11.18). Then we get, by use of 

(11.19) 

a    /2G =4K' + -2- (V V v' - L \'    6 ) (11.23) ij      *ij  m-1 v i j xkk    *kk ij »".«»* 

This equation substituted in eq. (11.22) gives us eq. (11.20) directly 

as we easily can check. The secondary conditions of (11.19) are suffi- 

cient but not necessary for us to get eq. (11.17) from eq. (11.20). 

We get the necessary and sufficient conditions if we substitute a 

into eq. (11.22), which is calculated without the conditions (11.19). 

Then we get 

LL  Xij - M71 VR x^j ♦ Vj 7R xki) + £ V1 7j 7fe V, ^ 

+ »7TA7k7A*k/6ij = \i ■ (II-24) 
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and the necessary and sufficient conditions are obviously 

- M7i \ Ki+ 7j \ <i>+ ^r vi vj \ "i \i 

m+1   k I  *ki ij 
(11.25) 

which is identical to 

def [(m+l) Aj) - nW^] - A V pj I_ = 0 ; £_ = V-j^' 

They are satisfied by the stronger conditions (11.19). For the proof 

that the conditions (11.19) are allowed, which naturally contains the 

conditions (11.25), we refer to the original paper [77] in which the 

author initially presented the conditions (11.19). This was also found 

independently by Marguerre [98]. 

§13 Solution of the Superposition Problem 
by Self Stresses 

The first problems which were solved by three-dimensional stress 

functions were related to an infinite body.  Its volume is V.  Then we 

have only a superposition problem, but no boundary value problem. 

The stress function tensor )c of the related problem must satisfy 

the necessary and sufficient conditions (11.17).  Substituted these by 

the sufficient conditions (11.20) and (11.20'), respectively, and (11.19), 

The two first mentioned equations are satisfied by the expressions 

x„c*>--äjj;jx<i'> I«L i«' •ij -      gIT---   ij 

x^.-iJJJv«') k-x'l dv' 

(11.26) 

(11.26*) 
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If we substitute eq. (11.26) into (11.27), then we get the 

stresses as a function of the distribution of the incoapatibilities 

after carrying out the differentiation. These formulas were first 

mentioned by Moriguti [102] (without the use of the stress function 

tensor), who proved it by direct verification. I thank Dr. J. D. 

Eshelby for calling ay attention to the paper of Moriguti (March 1957). 

as we know from the theory of the equations of the bipotentials. 

From the identity V T]  = 0, it easily follows that the secondary 

equations are also fulfilled. 

We have seen in the case of Maxwell's and Morera's functions 

that the tensor inc x has only three, not six, degrees of freedom. 

That holds for every tensor of incompatibility, so also for T[ and T['. 

So the six integrations can be reduced to three as follows. 

As mentioned above, X_ of eq. (11.26) is a tensor of incompat- 

ibility (div x_'= 0), since J[ is such a tensor. Also it is easy to 

show that x_ in eq. (2.26) becomes a deformator if we substitute it 

for Tj , However, a deformator does not contribute to the stresses, 

since a = inc x_ according to eq. (1.42).  So obviously we get the same 

stresses if we add an arbitrary deformator to the real 7) and we replace 

JJ_'in eq. (2.26) by the resulting tensor (IT").  However, we can choose 

T±" in such a way that, e.g., T^ = 1\"22 = 7]'^ = 0 or T)^ = Tj^ = ^ = 0. 

Accordingly, it becomes xn = X22 = X33 = 0 or x12 = X23 = X31= 0. 

So we get a form in Maxwell's or Morera's functions, respectively, which 

is very useful for determining the states of self stresses. 
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Now the calculation of Tf Is very easy. If we let be 

T|" = def a ♦ T[' 

then, e.g., we have 

(11.27) 

da1/ox1 = - T\'u  ,    d.2/ax2 , - T)22,  da3 dx3 = - ^    (11.28) 

from which we get useful functions a., a„, a. after ordinary integration. 

»" . •>" 
We obtain T) (= IT.,), i * j, if we substitute this in (11.27). Fron this 

follows that Morera's stress function of the self stresses is 

XtJ(x) = - i/J7 ^(x') jx-x'l dv'    i 4  j (II.29) 

Then the simple formulas of Morera held for the stresses 

*2 
dX23 Cll = 2 oxTlx; •  etc' 

23 
^23  dX21  dxl 

1 ■ ^T + ^- + ^3 

3 / VA23  "*21  ^12\ 
dx~ \~ dx, + ox~~ + dx„ / 

(11.30) 

In a similarly easy way we can determine such values for a , a , a„ 
X   2   o 

.da   da * 

2 (air+ sr)=" ^2 ' etc- 2     1 
(11.31) 

and from eq. (11.27) we get Maxwell's stress functions of the self 

stresses to be 

\i^ =" sW// KjW h-*!\ dv'     i = J <n-32> 

. aafc^vw^--.**' ■ 
"■ *- ■*'■■'-■*«-.-. ^.«wäfifc* v-ass; 1   ^       *   *     fc&fc 
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The stresses follow from these 

*22    *33 an = - -ri—rr ' etc- 
öx3 ÖX2 

c23 " 5T-55T • etc* 
2      3 

With finite media, a boundary value problem always follows after the 

problem of superposition.  Before we treat this, we must first of all 

investigate whether or not we are allowed to apply to finite media those 

methods which we have derived for calculating the particular integral 

of the differential equation (11.17) in the case of infinite media. 

We can easily show that in the finite medium the X, of eq. (11.26') 

does not generally satisfy the secondary condition div x_ = 0.  So it is 

obviously not certain that this x_ represents a solution of eqs. (11.17). 

However, since div x, =   ■; a permitted condition, there must be 

a solution of AA x_ = T[ for which we have div x'= 0 and so fulfills 

eqs. (11.17). 

To get such a solution, we must look for a continuation of the 

function Tj_ in the volume external to the medium, which matches Tj_ at 

the boundary surface and is continuous and different!able across it, 

and which vanishes very strongly at infinity.  It is not difficult to 

get such a continuation.  We call the function which we find by this 

method and which agrees with T\    at the surface of the body, Tjl.  We sub- 

stitute this function for T[ into eq. (11.26) and integrate over the 

infinite volume.  So we get a field of stress functions which fulfills 

the differential equation (11.20') and the secondary conditions (11.19) 
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in the whole body; thus it represents the desired particular solution 

of eq. (11.17). Now we will add a deforaator, def a, to Tjl as above 

so that we again obtain a Maxwell's or Morera's function. If this 

aethcd succeeds, the deforaator does not contribute to the stresses. 

It can easily be shown that this holds, but we dispense with the proof. 

So it is possible to calculate a tensor T\"  = Tjl + def a even in a finite 

medium, where only three components of T£ are different from zero. Then 
11 instead of If 

it follows that AA X = ül and eqs. (11.29) and (11.32) with if/are par_ 

ticular integrals of these equations, which simultaneously satisfy the 

equation (11.17). 

It should be mentioned that in the case of given distributions 

of dislocations and incompatibilities, respectively, the methods which 

are derived in this section are in practice the only ones available to 

solve the superposition problem.  In the case of quasi-dislocations (§6) 

For this, see also, Eshelby [41], S. 91 ff. 

T 
where primarily the applied strains c are given, there still exists 

the method which is known from the old theory of thermal stresses of 

Duhamel [33] and Neumann [112].  By use of the expression 

7i cijk£ £U = 7? (II'34) 

the related "quasi forces" 5 and the displacement field associated 

with these are calculated according to the well-known methods. From 

T 
this the total strain e follows by taking the deforaator. Then the 

T   Q 
elastic strain is £ = £ - «  from which the stresses follow by use 

«».•».- rcä*a0MWI$ 
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of Hooke's La«. This aethod might require the saae effort as that of 

the »trees function. 

Finally, we «ill mention a further aethod which is only appli- 

cable to infinite aedia at this tlae. We take instead of (II.2)1 

o = curl <p_ (11.35) 

Guenther [61] and Schaefer [126] use a stress function tensor 

ijk ' *iji ^Jtk Yi4t = ei4» ?ib *or other cases. 

where <£_ ■ (cp..) is the asymmetrical 1st order stress function tensor 

(because it will be differentiated only once to get the stresses). 

Then it is obvious that |=^XV, from which it follows 

cp  =0 
*ii 

7 CO  =0 
J'iJ 

(11.36) 

By taking the curl from the right hand side we get with help of (11.18) 

for the secondary condition (11.19) which contains x_ 

V cp  =0 
i Vij 

(11.37) 

as we can easily check.  Since x has three degrees of freedom by the 

restriction (11.19), cp_ also has three by the restrictions (11.36) and 

(11.37).  With Hooke's Law, it follows from eq. (II 35) 

€ij ~ SijkX €kmn 7m 'nl 
(11.38) 

and by taking the curl from the left hand side, we get 

* U4 ^  e.... s a' * - s*... i e r.j   e,       v"    v"   cp   . ghi    h    ij        gj        ijkjfc    ghi    kam    n   m   n£ 
(11.39) 
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which becomes In the case of isotropy, according to eq. (11.11), 

a'. = \'  e . . t.     7. 7 » , 
gj     ghj imn h m TnX 

+ n'(e .,   c,      7U 7   <p  . + e wj e^      V.   V   (P J ,     (11.40) ghk    kmn    h    ra Tnj        ghi    jmn    h    m Tni 

After multiplying with s.    , we obtain by use of eq.   (A.2,3)  and 
*gj 

(11.36) 

This we substitute into eq. (11.40) after replacing the indices ffg,j by 

hpq and finally, if we also use the decomposition formulas (A.2) and 

consider (11.36,37) we get 

^ij—m^Kj-^^- (II'42> 

W (11.36,37), eghl  ejmn Vh Vm cpn£ = - A cpgj holds, rince 

it follows from (A.D. 

What does a     mean? We take the decomposition, which is unique in the 

infinite medium, 

£= def £ + inc £ (11.43) 

and express the equation div a = 0 by use of Hooke's Law in terms of 

sandi.1 With (1.42), we get 

Asi + Ä Vjsj + Ä Vinc i>jj = ° (II'44) 

We restrict ourselves to small deformations and rotations. 

■ -t..tu.4*@* #*#& ,: .■ ,„,. ^tffft&p % 
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and by taking the curl it follows that 

A curl a = 0 . (11.45) 

That is why curl s_ = const, in the infinite medium. From this is follows 

that 

curl def s = \ 7 x (7 s + s 7) = |(curl s) 7 = 0       (11.46) 

and it holds that 

a'  s curl e_= curl inc i_ (11.47) 

is 
I.e., according to IS, or' (that part of the total dislocation density 

Q 
which caused the stresses.  In the case of quasi-dislocations gr  of 

§6, a' is often directly a .  Furthermore, we have shown in §11 that we 

can calculate <*' when we determine the rotations (a' is equal to the 

right hand side of eq. (I.105))).  So we are still allowed to consider 

a1 as a given function. From eq. (11.47) we can easioy see that a* * 

is governed by the same conditions, (11.36) and (11.37), as t£_,  i.e., 

that also the particular integral of eq. (11.42) satisfied these conditions: 

thus it gives the correct stress function tensor corresponding to a'., 

from which the stresses follow according to eq. (11.35). 

It is easy to reduce the nine integrations of eq. (11.48) to 

six, similar to the reduction of the six integrations of eq. (11.26) 

to three.  But we do not know if it is possible to get only three inte- 

grations of (11.48).  In general the stress functions cp  have not been 

explored previously, but we believe for other reasons that it is worth 
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while to explore them.  If we write, analogous to previous derivation, 

n X £ = -or' for a body which adjoins rigid surroundings, then the elastic 

energy of the body takes the form, s.nce div o = 0, 

E = itfJ\j*ijdv4Jp;J*ijdF (n-49) 

or also 

E = |///of.jcpijdV + I//5ijcPijdF (11.50) 

as we will show in the next section.     £ is expressed by the dislocations 

which cause the self stresses. 

1 2 E.g.,  if cp      and cp      are fields of stress functions caused by 
j j 

12 1 two single dislocations a, .    and or      in the infinite medium,     the 

energy can be written 

* 5 MJ ah "IJ dv (n-50,) 

1 12 
In this case we have to consider or. . and a. . as distributions. 

ij     ij 

Obviously the third and fourth integral mean the potential energy of 

one dislocation in the field of the other dislocation and vice versa. 

In this way we obtain an interpretation of the stress function cp . 

This represents a dislocation potential.  (The circumstances are 

analogous to electrostatics, where we have the energy E s - Jj'J p U dV, 
V 

if p is the density of the charge. U is called the potential of the 

charge.) 

■«' <*SJ «**   <& 



88 

The 2nd order stress functions xi1i 
ar« analogously the elastic 

potential of the incompatibilities. 

§14. The Elastic Energy and the Varlational Problem 
in a Medium with Self Stresses 

Now we will calculate the expression for the elastic energy of 

a medium with   self  stresses in terms of stress functions and incom- 

patibilities. The starting point is the formula 

E = I^ffijeiJdV (II'51) 

which can be written with eq. (II.2) 

E - - 1 eiJ* 'ian UJ  «Ü 7J 7» **» W (H-52) 

Partial integration yields 

E ■ " \ €ijk e*mn «Jjf    nj  \i 7m *kn " 
r 

- JIT <ViJ 7» \*dvl (II-53) 

which is identical to eq. (11.49).   Since in the initial equation 

(11.51) we can also write the distortion B  instead of the strains 

(because of the symmetry of a..),  eq. (11.50) is proved. 

It holds that 

5Amn Vm *kn = " \i> €ijk Vjeijf ' akl' €ijk nj  \i = "ki 
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After partial integration of the voltwe integral in (11.53), 

we get 

E " - I €ijk €lmn fJJ nj CiJ 7» *kn * 

" // <7J €ii> n« *kn *" + I /// *kn \n dV (II'54) 

where the relation (11.21) is used.    Here we decompose V    in the first 

integral according to the formula 

1 I 
V=nVn+€        e       nVn m        m    p    p        mpq    rsq    s    r    p (11.55) 

which can easily be verified by the use of eq. (A.2), and where the 

arrow indicates that in addition to the function which is influenced 

by 7 , n is also differentiated. The integral which is produced by 

the second term of (11.55) is integrated by parts again by the use of 

Stokes' theorem. The related line integral vanishes since F is a 
n 

closed surface. With the abbreviation 7 = e   e   n n 7 
m   mpq rsq s p r 

of eq.   (1.82),  the non-vanishing terms are 

E = " « €4.:.   €*      [ff n.,  £
J < n    V (n   x,   ) dF 2    ijk    Xmn lJ*    j    it   m   p    p Akn 

'fS\n^%Vj eii + 7m(nj  «ii))d,] 

+ 2-//J\n\ndV (11.56) 

The comparison with eqs. (1.87) and (1.90) gives in the case of the 

body with a rigid surface 

dF E4/f Xij^ij^Z/XiAj 

(11.57) 

••K ■■■■■■v.".--.- ■>„;., ;;.^;t 
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In this equation n are the Cartesian components of the normal vector 

n of the family of surfaces (18) of which one is the boundary surface F. 

This interpretation of n. is necessary to carry out the differentia- 

tion V.n. properly, for now n has also a meaning off of F (it is suf- 

ficient to define n in an infinitesimal neighborhood of F). 

Equation (11.57) states that the elastic energy, hence the 

self stresses, of a body which has a rigid surface vanishes if there 

is no body force and the incompatibilities vanish. 

Now we will treat a body with a free surface. According to 

the well-known theorem of Colonnetti [17], the elastic energy of a 

body to which external forces and self stresses are applied simultan- 

eously is obtained gy adding the elastic energies of both parts; in 

our nomenclature 

E(T[,5) = EQ) + E(?), 

where 7 represents the body and surface forces.  The step from 

(11.58) 

This theorem also holds in the case of a body with a rigid 

surface (then we can include the surface incompatibilities in Tj). 

L   S       L   S 
If we let <7=&+<7,  • -  5_ + s,  where L indicates the stresses 

caused by the load and S the self stresses, then the E(o), which is 

L      S 
calculated according to eq. (11.51), differs from E(a ) + E(a ) by 

the interaction energy, JJj a. . €  dV (theorem of Betti), and since 

7 a     = 0 this can be written in a similar form to (11.57) 

*" ■ iff <i <t 
dv+/; <t % "+/; v\ *i A • 

Since 

and TJ_ 

7)    , T|     I vanish, we have    ET    = 0. 
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eq. (11.51) to (11.52) holds if there no body forces. However, 

eq. (11.52) and following still contain ten» due to the boundary 

forces. However, as shown in 18 at a free surface the surface 

incompatibilities are zero. We can show that the surface integral 

in eq. (11.54) vanishes if there are no surface forces and n i]  = 0 

so that only 

V 
E - \I!j *u \idv   lfni\, = ° (II-59) 

remains. This equation contains the theorem that in a simply con- 

nected body and in the region of the linear theory of elasticity all 

self stress can be derived from incompatibilities. Eq. (11.57) eon- 

tains the same theorem for a body with a rigid surface. This holds 

even if we create new boundary surfaces by allowing 71  to degenerate 

in the interior of the body to a plane (or even to a line). Accord- 

ing to this it is obvious that generally in the region of the linear 

theory of elasticity the theorem holds that all self stresses are 

caused by incompatibilities. Furthermore, the reverse holds, that 

all (symmetric) incompatibilities cause self stresses, which is 

obvious from the meaning of incompatibilities as derivatives of the 

elastic strains. 

The question of the uniqueness of the solution is of great 

importance. Thanks to the uniqueness theorem of Kirchhoff of the 

classic theory of elasticity and to the theorem of Colonnetti it is suf- 

ficient to clarify that in the absence of external forces the self 

stresses (which follou from the stress functions) are uniquely deter- 

mined by given incompatibilities.  It can readily be proved that for 

A***» >1 '<'U*£A-**3ö»a»# 
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an infinite medium eq. (11.26) Is a unique solution of (11.19) and 

(11.20), since there is no incompatibility at infinity. In a finite 

medium, however, it must be shown that the additional boundary value 

problem has ? unique solution. We will show in the next section that 

with self stresses we always get both of the well-known boundary 

problems of the theory of elasticity, for which the proof of uniqueness 

is given in literature, so it generally holds in the region of linear 

theory of elasticity that the stresses of a body are uniquely determined 

by the external forces and the incompatibilities. 

All the previously considered bodies were simply connected 

bodies even if we allow that the incompatibilities are out of the body. 

(This procedure is known from hydrodynamics.  We calculate a flow 

around a body as if there were sources and vortices in the body.) 

However, in the region of the nonlinear theory of elasticity, we eafcnot 

refer all stresses to external forces or incompatibilities, as the 

example of the invertible hermisphere shows [160], 

The variational problem of self stresses has already been 

formulated by Colonnetti [19].  In our nomenclature the expression of 

the variation of the energy should vanish 

p 
where e  is the imposed (plastic or quasi-plastic) strain.  The second 

term of eq. (11.60) Colonnetti called the "potential of the applied 

P    T 
strain." If we substitute e#J = e . - e. , according to iiQ,   (1.1) of 

lj        ij        ij 

page 1  into eq.   (11.60),  we obtain 

" I M €ij CTij dV (II'61> 
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for 

fjY «T4 a44 dV = 0 (11.62) 
«y  1J ij 

as was first found by Rieder [125] for the case of the body with 

a free surface.  In this case 

A »n T ft* ■»     T 
JjJ «„ Ou  dV . J^J (7i S^ dV 

- £ "I S] °H  * " ty "i  Vi °ij dV = °   (II'63) 

since n.cr  and V,cr  vanish if there are no external forces. According 
i ij     i ij 

to Rieder [125], eq. (11.17) are the Eulei—Lagrange  equations of the 

problem of variation of eq. (11.61) (if there are no external forces; 

i.e., the incompatibilities are given). 

In the case of a rigid surface, it is possible to transform the 

left-hand side of eq. (11.62), multiplied by 1/2, to the expression 

(11.57) where 7) , 7]. , and TJ  are the incompatibilities which belong 

T T   T 
to e... These vanish according to the physical meaning of e  (e is 

T T 
a deformator, so 71  = 0) furthermore, s is zero on the rigid boundary 

-T    =T 
of the body.  Also, 7]  = Tj  = 0 (see eqs. (1.87) to (1.89)).  The 

variational problem which refers to the energy expressions (11.61) and 

(11.57), respectively, should include in addition to the differential 

eq. (11.17) also the boundary condition (1.89) which is in terms of 

X ..  This has not been calculated previously. 

For solving the variational problem of the body with a free 

surface by direct methods, we must take account of the fact that there 

are stress functions for which the related 71  vanishes, but not the 

Vii-^h S'ift 
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relate« boundary forces n a .  Such stress functions do not con- 

tribute to the integral (11.59) but do contribute to the integral 

(11.61),  In order to get the correct solution, therefore, the 

« 1 
integral (11.61) must become an extremum by constant TJ.  In the 

case of the body with a rigid surface the integral (11.57) is equiva- 

lent to (11.61).  One of these must become an extremum by constant 

V V and V 
Even Föppl f44] mentioned that (11.61) should become an 

extremum. The improvement is the addition "T) - const." 

We will shortly consider both of the boundary value problems for 

the body with a free surface (the superposition problem must be solved); 

according to §8 the problem "boundary displacement given" is the same 

as the problem "Tj , Tj given" for the body with a rigid surface (see 

also the following section). 

If we take the equation which was first mentioned by Schaefer 

[127]2 

*ij = XiJ " *kk 6i.l + Q \- (II'64) 

2 
This u). . is not the same as that formerly used. 

where A x.     = 0,   then in addition to the conditions of equilibrium, 

eqs. (11.17) are also automatically satisfied by TJ = 0, if 

A Q = -~ V 7 u)... (11.65) 
m-i i j ij 
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x-  is similar to x , a 2nd order tensor.  If we take as the solution 

of (11.65) 

" = CT Xi 7j XiJ + Xkk + V (II'66) 

then we obtain 

where 

Xtj = r±j  ♦ H 64J (11.67) 

H ■v + sir \*i sq-+ x2 ^-+ x3 s^-j (II-68) 

and Av = 0. We can show [77] that we are allowed to let v = x  = 

^23 = x31 = °-  Wlth 

Xij = Mij + H 6ij      i=i (II'69) 

the Maxwell's functions in the case of T] = o are reduced to three 

harmonic functions. We can easily show that these relations fulfill 

(11.25) but not (11.19).  For the functions x. . we take series of 

harmonic functions and determine the coefficients by usual methods 

to that the boundary conditions, which are expressed in terms of 

X.., are matched very closely.  If we add the stress functions derived 

in such a way to the particular Maxwell's function, which were obtained 

according to §13, then we obtain the resulting Maxwell's functions for 

the associated state of stress. 



115. Boundary Value Problems Which Arise 
with Self Stresses 

and Their Treatment with Stress Functions 

The particular integral (11.29) and (11,32) of the differential 

equation (11.17) which governs the self stresses does not fulfill in 

general the boundary conditions in a body with a free surface, since the 

tractions n a. .  ?0  on the boundary, whereas in the body with a rigid 

surface it does not satisfy the strains (1.89).  In the first case the 

boundary value problem of the form 

°i CTij - Aj (II-70) 

remains, whereas in the second case, the form 

inc £= 5 »      inc 1 = Ü (11.71) 

must be solved.  In both cases the stress functions used have to 

satisfy eqs. (11.17) with T| = 0.  We replace these according to §12 

by the equations 

AA x' = 0,       v-± X     = 0 (11.72) 

In practice problems occur where portions of a body separated 

by a dislocation wall have different elastic moduli.  In this case we 

must consider the boundary conditions in terms of both the stresses 

and strains.  (11.70) and (11.71) indicate the limiting cases 

(modulus = 0 and », respectively, in the partial volume) of this 

problem, to which it always can be reduced. This remark should explain 

why we are concerned with the body with a rigid surface. 
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We will show now that we also can replace the boundary value 

problem (11.71) by the problem "boundary displacement given."  T) , 

T| , and T)  may be prescribed. Then the elastic strain is composed 

0 H of two parts. The particular solution e  and a second part e  which 

satisfies the homogeneous equations 

inc t = 0 div a = 0 aij = cijkjB \l (11.73) 

?=*J       —U =11 
_ , Jl   and T[ , ^ 

o    H —H  ■" on 
with both £ and £ according to eqs. (11.71).  We have \   = 7) - Tp 

HO H 
since £ = £ - £ , etc. The problem is to determine a strain £ 

which satisfies eqs. (11.72) and at the same time the boundary condi- 

tions (11.71) which are written with the index H. For simplicity 

we omit the index H in the following. Because of the first equation 

of (11.73) e has the form def s. We can easily show, but we will not 

at this time, that in this case the boundary conditions can be integrated 

over the boundary surface and can be cast in the form 

= S. (11.74) 

where g_ is derived from T] and Tj. £ is that displacement which will 

occur at the surface of the medium if the restraint of the rigid sur- 

rounding suddenly vanished. 

So it is obvious that we can treat the self stresses with 

the previously known boundary value problems.  For these there exist 

numerous solution methods, which is why we will discuss shortly the 

application of three-dimensional stress functions to solve these 

problems. 
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The stress function tensor does not represent a unique system 

of functions, thus it represents a greater variety of physical situa- 

tions than, e.g., the displacement vector, which is expressed by the 

secondary conditions.  So we have the possibility of adjusting our- 

selves to given problems by choosing the secondary conditions. Further- 

more, Airy's stress functions are so convenient for two-dimensional 

problems that we will at least try to obtain a similar method for three- 

dimensional problems. 

The goal is not reached. However the simple form of the energy 

equation '11.57) leads us to believe that the boundary value problem 

defined by eqs. (11.71) and (11.74), respectively, can be successfully 

treated oy stress functions.  If we take the approach of the classical 

Green's method, then we have to start with the theorem of Betti, which 

we can write in terms of stress functions after comparing with 

eq. (11.57) 

!!S xjd TFU «♦ n A3 ? - * Jj" v\ A& « 
(11.75) 

■ J? <i <i dv + JJ <i *U " + JJ V\ "'A * • 
Then we identify T| , T)   and T)  with the given incompatibilities, 

X  with the desired stress function tensor, whereas we substitute for 

2 
%     the fundamental solution (main solution) of the differential 

equations (11.17). Naturally we want to use the fact that these equa- 

tions assume the form AAx.. = 0 with the related secondary conditions, 

because the fundamental integral of this equation is given by the form 

(x - x* |/8TT. Then we hope to reduce the whole boundary value problem 

to the determination of a biharmonic Green's function for the region 
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considered. Among other things, the difficulty is now that we do not 

know how we can satisfy the secondary conditions which at least guar- 

antee that the differential equation (11.17) is satisfied.  Written in 

terms of x^1 
tne boundary conditions (11.70) are 

e, -. e«  n.Vtf X,  = A. (11.76) ijk imn I j niTin   I 

which we have to fulfill simultaneously with eqs. (11.17).  If we 

replace these by eqs. (11.72), then we must be sure that v". x!., = 0 

is fulfilled.  We can do this if we prescribe 

vi <i = °>     Jr (vi <j> - ° (II-77> 

on the boundary in addition to the boundary conditions.  For with 

(11.72) the following holds: 

AA(V. x' ) = 0, (11.78) 

from which it is clear that with the boundary values (11.77) 

V. x.• vanishes simultaneously in the whole volume. The biharmonic 
i ij 

problem defined by the boundary conditions (11.76) and (11.77) has 

not been investigated until now. 

On the other hand, it is very easy to find a field X.. which 

satisfies the boundary conditions (11.76) and the differential equa- 

tions AAx.  = 0-  F<>r this it is only necessary to set up the Green' s 

function.  It is not impossible to find without great difficulty the 

field which must be added to x.. so that the secondary conditions are 

satisfied, i.e., also the differential equations (11.17). 

' «wainuS   •■'<«£ 
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116 Extension for Elastic Anisotropy, 
Double Forces 

The crystals of metals, to which we will apply the theory of 

distortions, are in many cases ver> elastically anisotropic,  which can 

not always be neglected.  Therefore, even Burgers [13) applied the 

anisotropic theory of elasticity to dislocations.  Now we will gather 

important formulas, which not only allow us to treat the dislocation 

by elastic anisotropy, but also give a basis for the treatment of other 

important elasti   ingularities. 

First of all  e.. = — (Vs. + V'.s.) in the region without singu- 
ij  2  i j   j l 

larities.  If we introduce this by use of the Hooke's Law into the equa- 

tions of equilibrium (I I.5), then we get 

V si♦ 5j   °' D.-fV) s c. ., . V.V, 
jx      lj kX l k 

(11.79) 

Let f(V) be the determi!; nt  ID.,  and D. .(V)  be the symmetric tensor 1 ik'     IJ ' 
* 

of the subdeterminant of f, i.e., D.. D., = f6. .  With 
'    jl    ik jk 

"l '-  \l \ (11.80) 

equation  (11.79)  becomes 

f h.  + J.  --0, (11.81) 
J J 

In the case of a point force P. at the point x' we can write 

5 (x) = P.6(x-x'),  5(x-x') i=.'ix -x') 6(x -x') 6(x -x') (11.82) 

then 

f h. + P.(x') i(x-x*) = 0 
J   J - 

(11.83) 



, 
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By the equation 

f U + 6(x) = 0 (11.84) 
homogeneous 

we define the fundamental solution U(x) of the linear'differential 

equation of order 6, fu = 0,  in the Infinite medium (so it is 

unique except for a negligible function of the 5th power of x). If 

we know U, then we also know the particular integral of (11.81) 

h <x) = f' U(x) 5. (x')dV',    XE |x - x« j 
j -  JV     i    - v (11.85) 

Therefore, for the point force in the infinite medium it holds that 

h (x) = U(x) Pj(x') (11.86) 

The related displacement field is, according to eq. (11.80) 

s (x) = s
iA

x'>  P^*' > I       sii = Dii U * (H.87) 

Tne symmetric tensor S  is the fundamental solution of the elastic 

differential equations (11.79) for the displacement.  By use of it the 

particular solution of eq. (11.79) becomes 

sAx)  = Fi   S Ax)  y.(x')dV 

The physical meaning of the components of S.. can easily be shown from 

eq. (11.87) if we assume |p.| = 1.  Then S  is the j-component of the 

related displacement. 

We say, 

sAx)  = P .Ax')  V.   S4. (x) (11.89) 
k -    xj -   i jk 

is the displacement at the point x, which is caused by a double force 

P.. at the point x*.  We call the tensor, P.., which is not necessarily 
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symmetric, the force dipole. Tne second Index shows the direction of 

opposite and equal point forces. The first index shows the direction 

of the connection of the points of application; this is also the 

direction in which the two forces move together as we pass to the limit 

Paj =     lim      i,  P, (11.90) 
U  1 - o , P ~ -  l i 

The diagonal components of P.. are double forces without moments; the 

other components have moments about an axis perpendicular to the i- 

and j-direction. The entire torque is described by the antisymmetric 

part of P .  For further information about double forces, see Love [95], 

The displacement 

8i<x> = p•*•.<*') v 7, s,.*<x> (II.9D I — ljk ~   l j k* 

is caused by the quadrupole forces P  , and in a similar way we can 

define poles of higher order. 

In the case of elastic isotropy we can calculate with 

eq. (Ii.9) 

Di. = (Hn) 7 V + u A 6 (11.92) 

D* s [- n(\+n) V.V + n(\+2ji) A 6  ] A (11.93) 

f = ^2(\+2p.) AAA, U =  j  x3 (11.94) 
96TT u (\+2p.) 

3 
therefore with Ax = 12 x 

Sij = ik (" "ik Vj+ 6u A) x (II-95) 
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Here the components of S  are elementary functions of x. The same 

remark holds only In the case of hexagonal symmetry [76,180]. 

Now we will describe briefly the stress function method 

for anisotropy [80], which again has the advantage that It can be 

applied to continuously distributed dislocations. Let 

XiJ " XijkX *ki' 7i *ij = ° (11.96) 

where X  - is a 2nd order differential operator which is known only 

for the case of isotropy and cubic symmetry.  It has the same symmetry 

as the Hooke's tensor of the related crystal and can be written in the 

case of isotropy 

Xijki " ^2X 6iJ 6k* + <**«MH«lk 6jX + 6^ 6jk)] t (11.97) 

The \|r  satisfy the differential equation 

f * = T\ (11.98) 

which is solved by 

♦u(s} = -;.! j Tl ,(x') U(x)dV* 
r AJ 

(11.99) 

For the stress function v.. we get 

\*--n!\iW\iuvw (11.100) 

In the case of isotropy with (11.97) and (11.94) 

xijk/u = &Lx^6ij6ki + £k 6jx + 6ii6jk]x (11.101) 
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by which eq. (11.100) can be tran«formed into (11.26). The treatment 

»f the plane problem la of lntereat in order to apply it to straight 

dislocation lines. We assume d/dx. = 0. The functions we will get 

now should be signified by a bar.  It can be shown that f, a function of 

order 6,  can be decomposed into a triple product of terms which are 

of order 2 and homogeneous (for Isotropie and hexagonal crystals this is 

possible for the three-dimensional f). Thus, the characteristic 6th 

order equation related to f has elementary solutions and the related 

(two-dimensional) fundamental solution Ü becomes an elementary function, 

which can be derived very easily in all cases. Therefore we rssume them 

to be known.  It holds that 

Ü(x) = J U(x) dx (11.102) 

as is well known from the theory of differential equations. Now we 

have gathered the basic techniques to treat dislocations and other 

singularities with sufficient completeness. 

§17. The Treatment of Singular Dislocations According 
to the Theory of Elasticity 

For applications, the single dislocation is an important factor. 

In Fig. 9a,b the development of a single edge dislocation was shown. 

We imagine that the cut cylinder of Fig. 9a is pressed together to 

become the complete cylinder of Fig. 9b so that the relative displace- 

ment £ of the plane A with respect to B has only an x. component; 

afterwards A and B coalesce to a plane f. Figure 10 shows the develop- 

ment of a screw dislocation: We imagine that the cjiInder of Fig. 10 
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Is produced by cutting a complete cylinder open and by a relative dis- 

placement of the cut edges in the direction of the cylinder axis. 

In general the dislocation will occur along an arbitrary three- 

dimensional curve L with the unit tangent vector t which surrounds its 

surface of development (of the dislocation) f with the unit nonral vector 

n. £ is the unit vector n x t^ We assume that £ is so small that we 

can consider the "dislocation strip" of width 2£ to be locally linear. 

Then q is the shortest distance between the curve L and a point which 

lies on 1. 

According to eq. (1.77) the dislocation density in the strip is 

- n x Vg, which is equal to t(dg_/dq), because g_ changes only in the 

q-direction. The distribution of g(q) is naturally unknown to us; in 

Fig. 9, 10 it is shown linearly changing, more generally d|gj/dq may be 

an arbitrary curve, which we write - \(q)|g_ |, where g_ is the constant 

displacement along most of the surface f. According to 81,2, b - -£ 

is the Burgers vector of the dislocation. Thus we obtain the two- 

dimensional dislocation density 

\l = \ bl >(q) 
(11.103) 

After this calculation the main calculation follows. The start- 

ing point is eq. (11.26') in which we substitute T)  according to 

eq. (1.51) 

\i  * - (Cjkf \ aizy (11.104) 

S means "symmetric part of 

ifeÄ3*»Ä:'*'»•** *-''■ ■■*>■*-»■<*-«*■■*»■■■ 



106 

After partial integration we obtain, since the surface integral vanishes 

with r = a/ox« 
k k 

xij(x> = S Ujki IS! aii(* )Vkx dv'>S- x s Is* I'    (II-105) 

Here we have evidently to substitute a , dV = or , dq'  dL', where dL' 

is the Magnitude of the line element dL'  of the curve L.     With    (11.103) 

we obtain 

ait dV  = ti bj yiq')äq,*  dL'  = *>l «*4 yWi *<*' (11.106) 

If we substitute this in eq. (11.105) and y(q') by the delta function 

6(q')t then we can carry out the integration with respect to q' and 

we obtain for the singular dislocation line 

^ = -i(«jwbifJ'r
7ixdL;8(q,)*»,)S 

L -fc 

8n  jki I * ic    l 

If we take V' in front of the integral, where the sign will be reversed, 

since we not differentiate «ich respect to x , then we obtain the final 

formula, which was first mentioned by the author [78] 

Kr^ui*ihi\$LxdL'i)S (II-107) 

By this technique the state of stress which is caused by a dislocation 

along the curve L, is reduced to the relatively simple integral 0 x dL'. 

It will be shown that the stresses at the curve itself diverge, which 

obviously arises from the limit y(q) ■* 6(q).  If we are interested in 

the state in the immediate surrounding of the curve L, then we are not 

L 
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allowed to take thia Halt, but we have to Integrate the equation with 

1 
Y(q) of (11.106'). 

At some distance from L the principle of de St. Venant becomes 

effective: the result no longer depends on the exact distribution 

function <y(q). 

If the dislocation line is a straight line and is along the x„ 

axis, then dL. becomes dx .  We can easily check the formula 

L/2 
f   x dx'  = - p2 In (p/L) + L2/4,  p2 = x? + x2      (11.108) 
-L/2    3 *   2 

I 2 
I which holds everywhere, where o( x « L.  In this expression L is the 
1 

| 2 
» The exact expression (11.108) is 
| 

(p   /2)ln [(- + x3 + </+ ) (- - x3 + *P )/p   ] + _(-+ x3) </+ 

+  2(2 " V J~  '' "T*    ~ ^P   (2 ± X3} 

length of the dislocation, which now shall go to infinity. According to 

eq. (11.107) and (II.2) the expression (11.108) is to be differentiated 

2 
three times in order to get the stresses, p  In L does not contribute 

to these and we write by substituting (11.108) into (11.107) 

*3j ='¥r (eju + SK* Vbi vk p2 ln P (II-109) 

From the similarity of eq. (11.26') to (11.99) we conclude the corre- 

sponding formulas for anisotropy, hence, eq. (11.107) corresponds to 
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♦u= (etki bi \ SVM *1> (II-110> L 

and eq.   (11.109)   to 

from which we calculate the stress functions x.i according to 

eq. (11.96). 

The calculation of X ., which is necessary only once for each 

crystal, may be not very extensive in the two-dimensional case, but it 

is in the three-dimensional case [80]. We can see that in the case of 

straight dislocation lines and anisotropy, the stresses are found to 

be elementary functions (since Ü is an elementary function according to 

§16). Eshelby pointed out how we can obtain these also in the complex 

plane, x + ix , starting with a complex displacement field, s + is . 

Previously Burgers noticed [13] that the anisotropic formulas became 

very simple in the cubic crystals if the dislocations occur in a special 

crystallographic direction.  Especially, we obtain the same displacements 

for a screw dislocation in the (OOl) direction as for isotropy. 

Now we will distinguish two cases: 

1. The straight edge dislocation in the x3~direction. Then 

b_ = 7 = 0 and in eq. (11.109) j = 3, i.e., only xö3 is different 

from zero.  If we choose, e.g., x ;|b, (i.e., 1=1),  then 

*33 = IFbi o!:(P2lne) (II'112) 

According to eq. (11.16) and (11,18), the relation between Airy's 

1    2Gm 
stress function and x'  is given by 7 Xl- = X; with this we can 

We can obtain also xn and x22 different from zero according to 
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(Footnote Continued) 

eq. (11.18). By use of eq. (11.16) we can easily show that fron this 

the relation, m o_3 = a.. + a      ,  follows which is known from the theory 

of two-dimensional state of strain \\]; a    ,  a10 and a      are determined 

alone by x» thus we need not consider xn andx0„- 

write eq. (11.112) 

X = - 
A ö , 2 .  .   . _ 1 mG 
2^(P inp). A=2^m^T (11.113) 

This equation was obtained first by Koehler [111]. According to the 

normal rules of tue theory of elasticity the stresses follow 

,2   2 
2   2      X2 3X1 + X2 

2   2 
2 Xl Xl  X2 a12 = - a x/axl0x2 . A _ —§— 

p  P 

2  ,2 x2 ^ - x 
a22 = a2x/ÖXl = A T - 2 

(11.114) 

and the displacements are 

b 
c   

Dl r.        TT.  m/2 XlX2l   m „      X2 Sl = 2*L(CP " t  + SPT —j ' » = arC tan x7 
0 1 

S2 " ' 4TT( ̂
[(m-2)ln|+m!§-] 

(11.115) 

These equations were first derived in a different way by 

Burgers (see below) [12].  Taylor was the first who applied the theory 

of elasticity to crystal dislocations and particularly he demonstrated 
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'Footnote Continued) 

their relation to Volterra's work, but he was not exact in his detailed 

calculation. 

For the calculation of the displacement a special consideration is 

necessary since s diverges logarithmically with p [71]. 

2. Screw dislocations in the x direction. Then eq. (11.109) 

becomes 

,     1/2 .   d , 2 ,  x  ,   1/2 .  5 ,2, 
*3i " " *T b3 ST *   lnP)'^25S -8Tb3 5x7(p   lnP> 

(11.116) 

After multiplication with 2G, these are simultaneously the x     values. 

According to eq. (11.16) the stress function for torsion is then 

Gb3 /a2  ft2\  2 Gb3 
* -" IF (72+ TT) <"  m P) - - ST a» P +1) (H.117) 

dx1  dx2 

the stresses are 

Gb3X2 Gb3Xl 
*31 = —I • °32 = —4 <»'ll8> 

2rr p 2TT p 

and the displacements 

b x 
sx = s2 = 0, s3 = ~cp    cp = arc tan jp (11.119) 

In this case it is extremely instructive to use the displacements, 

since we can immediately see from eq. (11.119) the transformation of 

the x_ plane into the screw surface, o 

Because of s = s = 0, it is very convenient to derive these 

equations starting with the displacement s , as was originally done by 

Burgers [12] and as can be read in all books concerning dislocations. 
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Though the Integral (11.107) looks very simple, its integration 

is only possible in a closed form in the simplest cases. This happens 

with dislocations which are piecewise straight lines; also with disloca- 

tions which are plane quadratic curves. In the last case we get 

elliptic integrals. 

Originally, instead of the formula (11.107), the displacement 

field of the general dislocation line was represented as a surface 

integral (by Burgers [12]). By use of the Green's method in the case 

T) a 0 we can express the displacements in a body in terms of the volume 

and surface forces and the surface displacements. We obtain (for the 

explicit calculation, see, e.g., Seeger [134]) 

sh(~ "' J1TJ* si (x) ^OOdV + J7 Sih^x) y (x')dF 
V F (11.120) 

'II'uuW^^W' 

This formula was first mentioned by Fredholm [57] and dis- 

cuassed in Gebbia [58]. 

We can apply this formula, e.g., to the cut cylinder in Fig. 9a if we 

bend it together without welding initially (Fig. 9b). However, 5=0, 

also the second integral of eq. (11.120) vanishes since the surface 

forces which cause the planes A and B to be bent together are equal 

and opposite at the same points on these planes. Thus if we call the 

A   B 
displacement jump, s - s.,g. (§8), we obtain from eq. (11.120) 

Sh^> = II cijk* Vj wk V
x) df' 

J^ijuVj^ oi;sjeix)dF' 
(11.121) 

■'is?. 
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where f is the coalesced surface AB with A as the positive part and 

F is the surface of the body after welding.  If we neglect an exact 

description of the very near neighborhood of the dislocation, which 

means that we assume g_ on f is constant up to the curve L, and simul- 

taneously *e restrict ourselves to an infinite medium, then we obtain 

e 'x> = - b ff c ,. n. £- S,. (x)df .       (11.122) 
h ~    j J5  ijkl x ox  ih 

According to Burgers this is the displacement field, to a good approx- 

imation, caused by a displacement which occurred along an arbitrary 

curve L.  Similar to eq. (11.107), this does not hold in the near 

neighborhood of the curve.  In eq. (11.122), the glide vector is 

replaced by the Burgers vector. 

From the comparison with eq. (11.89) we conclude that ~ciikjj "jbj 

is the surface density of force dipoles. After welding, these dipoles 

have obviously taken the place of the external forces which bent the 

cylinder together.  It is possible to imagine that the fields which 

were caused by a dislocation are either produced by a dislocation line 

(eq. (II.110V or by a surface density of force dipoles, corresponding 

exactly to the fact in the theory of magnetic fields that a line current 

and a magnetic double layer are equivalent.  However, the direct proof 

of the equivalence of eq. (11.110) and (11.122) is very hard and is only 

carried out for isotropy [83], 

The integral '11.122) contains the part 

b       b 
jLn(x) = ±  IT n, V, i-df (11.123) 
4TT ~ ~   4n JJ  k k x 

See also Nabarro for this [109], 
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in the case of ivotropy, as we can easily jrify, e.g., by substituting 

eq. (11.9) into (11.95); n(x) is the three-dimensional solid angle by 

which the dislocation line is seen frost the point x.  This part causes 

an aabiguity of the displacement.  The remaining part was represented 

That the displacement field is not unique in the case of a 

dislocation follows from the existence of the Burgers vector b, which 

says that the displacement increases by b if we go once around the 

dislocation.  The surface of the dipcles is the branch surface.  The 

corresponding behavior of the electric potential around a linear 

electric current is well known. 

as a line integral by Burgers [12].  Peach and Koehler [115] also 

describee1 Q_ by a line integral and thus obtained the whole displacement 

field as a line integral, however, their formula does not have the 

simplicity of our line integral (11.107).  For anisotropy the displace- 

ment field was first calculated as a line integral by Leibfried [90]. 

This method has a special importance, as the transformation of 

eq. (11.122) into a line integral is the mathematical proof of the fact 

that the position of the surface f, on which we imagine the force dipoles 

are distributed, is arbitrary if the boundary is the dislocation line. 

Naturally this proof can be also derived from eq. (11.107). 

The second integral in eq. (11.121) represents the displacement 

which must be added to that of (II.122) to match the boundary conditions. 

Moreover, eq. (11.121) holds also in the case that £ is an arbitrary 

function of the surface f.  This is the case of the "Somigliana disloca- 

tion." This has been investigated previously by Mann [97] and Bogdanoff 

[9], 
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*18.  1'he Klastic Energy of the Singular Dislocation 

We define the elastic (self) energy of a dislocation to be the 

increase o! the potential energy which the medium, which was originally 

in a natural state, suffered during the invasion or development of a 

dislocation.  If the dislocation invades from the exterior, then we 

often have an edge on the surface (Fig. 10) through which the surface 

stresses of the continuum are locally changed.  This part of the change 

of the potential energy can be neglected in most cases, and therefore 

*e will no longer be concerned with it.  See Nabarro [110], p. 332. 

We restrict our considerations to the infinite medium.  In the 

center of the singular dislocation, the stresses become infinite 

according to eq. (11.114).  Therefore the energy of the dislocation per 

unit length (line energy) diverges.  This is the big problem with nil 

problems concerning the energy of dislocations.  The real dislocations 

have all a certain finite "width" 2C and so finite self energy. 

Fortunately ' is only contained logarithmically in the formula of the 

energy, so that it is not necessary for practical use to have the exact 

distribution of g(q) of the plastic relative displacement in the dis- 

location strip 2'. 

In the following we will talk of the dislocation "line." and 

where a finite width is important, we will emphasize this. 

According to Cottrell [122] we imagine that a dislocation lies 

r>long a curve L in an infinite medium without external forces, and 

a second dislocation is developed by cutting along a surface f with 

the boundary curve L , and both of the edges are plastically displaced 

A     A 
by the glide vector g. - - b .  The work done in this process is 
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= bi // (0iJ + 2 VdfJ ' <U-124) 

In the finite body we have, according to Bilby [2] 

additional to eq. (11.124) a tern ff », (c?.. + 4 oAJdF  which has **     i ij  2 ij  j 

a meaning similar to the second integral of eq. (11.121). Another 

starting point of the following investigation, which would bring the 

same results, is eq. (11.59). 

B B  A where o  is the stress field caused by the dislocation L , a  is the 
* J * J 

stress field which is developed during the procedure (therefore 1/2) 

caused by the curve L .  By replacing the stresses by the stress function 

according to eq. (II.2) and using Stokes' theorem, we get 

or according to eq. (11.96) expressed in terms of ijr 

W = - bi «ijk f Vj \im„(*L + \ O^l    • (II'126) 

B I Here we substitute A  of eq. (11.110) and get with 
I 

j E*
8
 = bA bB *(* (n.127) 

l  q  iq 

the following 

*(* = ~  e^ e   0 i    74 7 ^»  U(x)dLB dLA iq     ijk npq " . «„ j P KXmn      m  X 
LALB 

I A Bl X =  X -X 

(II.127') 
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This is the part of the work whlsh was caused by the presence of the 

It A 
dislocation 1. during the development of the dislocation line 1. , and 

A     li 
we call it the interaction energy of the dislocation L and 1. .  it 

holds that t.' K .  In the case of elastic isotropy with eq. (11.91) 

and (11.97) for eq. (11.127'), we obtain 

/»    G «   ,   £   §    (7.7x)r-i-dLBaL; 
iq    Hv    tjk npq J *   j p  j_>»-1  n 

IALB 

(11.128) 
B JfA  JfB J¥A -.. dL 
k  n * «*  dL + «-I ^ 6nkJ • 

The generally asymmetric tensor M~  is analogous to the well-known 
iq 

mutual inductance in the theory of linear currents. 

Blin [7] gave an equivalent formula to (11.128) and Stroh 

T148] gave an additional expression for the case that the dislocations 

are in a plane.  Kq. (11.127') was first mentioned by the author [80]. 

The formula (11.128) in the same paper contains a calculation error. 

For special arrangements of the dislocation the dislocation mutual 

inductance can be equal to the magnetic inductance of the similar 

arrangement of the current, as Hart [170] shows. 

Here we cannot substitute ii       according to eq. (11.110), for 
mn 

then we get a double line integral along the same line, which diverges. 

Therefore, we do not get a simple formula such as (11.127') for the 

self energy of a dislocation starting with (11.127').  We can approach 

the problem as follows:  We imagine that the dislocation strip of 

width 2Q  consists of "dislocation filaments" infinitely close together, 
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with the infinitesimal glide vector dgjq) = -b v(q)dq (see 117) and 

we calculate the interaction energy of all these filaments according 

1 
to eq. (11.127).  So we get (for isotropy) 

J 
E ■*. bSA *** 

i q iq 
(11.129) 

^ -  - TTT- e^„ €        J    dt*Y«l> J*    ***vW)ft (V.V x) T-L. dL'   dL„ iq 16TT    ijk    npq J^'^J^T^J«r      iP     |jn-l      n      k 

+ dL'   dL    + dL'   dL. 6 ,  I 
k      n 11    nk_j 

(11.129*) 

The superscript A is left off on the left-hand side of 

eq. (11.129).  The integration J)J» is taken along two dislocation 

filaments. 

Here the interaction energy of each line element wich all elements of 

all other filaments is considered, however, not the interaction energy 

with the elements of its own filament and not the self energy of the 

element of the filament.  However, we recognize, that with increasing 

number of dislocation filaments the latter part loses importance with 

respect to the former part, and it becomes infinitely small with respect 

to the former part if the filaments are infinitely near together. 

Therefore eq. (11.129) shows the correct value of the self energy of 

the dislocation strip indeed, and the symmetric tensor M  is the 

analogy to the self inductance. 

By use of the concepts of self and mutual inductance the energy 

of an arrangement of many dislocations can be written in the form 

E = E bA bB  4 
A,B X q lq 

(11.130) 
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where A and B take the value of each dislocation line. 

No* we show an application of the important equation (11.128), 

n 
e.g., a .straight dislocation line L lies along the x -direction. 

Then the integration along L in eq. (11.128) can be carried out in 

an elementary fashion.  We use eq. (11.108) and write 

(V . x)dl.- 
% .1 P   * j P 

x dLB B 
j P w 

lnfl 
L s 

(11.131) 

Hence, 

iq 8TT  ijk npq 
r 7.7 (p2lnß-) fJt dl*i + dL

A 

■ * j P     L Lm-1  k n    n 

+ dL* i. 6 ,"] I    I    nkj (11.132) 

We can easily check that the following relation holds 

VjV2 ln L S {<ln L + I)6jr + ^J •   J.P = l>2 (11.133) 

Now we restrict ourselves to the case that the dislocation L is in 

the x - 0 plane and we obtain for the right-hand side of eq. (11.133) 

2[(ln — + -)6 . + 6 . ], where j,p = 1,2 and 6 . =1 for j = p = 1, 
L   2 jp   jp        J,r jp 

otherwise vanishes.  This we substitute in eq. (11.132) and consider 

simultaneously that there we have i = i. = i. = i„ and furthermore, 
' n   k   X   3 

dL = 0.  For j = p = 1, we get the part 

p  r   i 
„ i | ^_ e 6 +   2£ ^ + 
8rr [_m-l     il3    31q il3    31q 

x 
2e.,, e,, 1 f (ln -i- + ?)dx„ 

ilk klqj J L   2  5 
(11.134) 

/B to be M  and for j = p = 2, the part 
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+ £ «i2k «k2q I  (ln T + 5)dX2 (11.135) 

Fro« this it easily follows that: 

AB G m i»    1  1 
^1    2n m-1 J.   L  2  2 

*£ - " I? & •I'*1'' T + I'^s 

■ä--B/."»T*l> dx„ 

Mjf « i j  *i i 
31  2TT m-1 J .   L  2  1 

LA 

"fi-s/."»-^* 5>dxi 

M23-M32"M12=M21-0 

(11.136) 

For the further treatment of the integration, we have to substitute in 

the logarithm the equation, x (x ), of the dislocation line L where dx 

A B appears». If L is also a straight line and parallel to L we have 

NL = MT! = 0, since dx - 0. Therefore, only the diagonal components ol   1J 1 

of H~  remain, i.e., parallel dislocation lines whose Burgers vector 

are perpendicular do not have any influence on each other in Isotropie 

medium (this conclusion follows from eq. (11.127). Now we write down 
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the components of u~  for x, = d (= parallel dislocation lines with the 
iq    1 

distance d) 

We carried out the second integration with the limits -LV2 -* L'/2 

where L' « L is assumed, since the presumption of eqs. (11.136) 

(validity of eq. (11.108)) only holds then. However, we will show 

later on that eqs. (11.137) are only slightly changed for the exact 

calculation L' - L, as long as L » d. 

The interaction energy of two straight parallel dislocations 

separated by a distance, d, was investigated by various authors.  By 

A  B 
differentiating it, the attractive (b , b antiparallel) or repulsive 

A  B 
(b , b parallel) force can be derived. Perhaps those authors got the 

formulas for the interaction energy which can be obtained by multiplying 

eqs. (11.137) with bt , in an easier way than we did, for the simplifi- 

cations of this special case can be used at the very beginning.  However, 

we used our derivation to get the equations (11.136), which are rela- 

tively simple and govern a group of problems which are of some impor- 

tance in practice.  We will discuss an application of these equations 

in 129. 

In eqs. (11.136) we can immediately see an important part of 

the result for dislocations whose lines are perpendicular to each other, 

A 
which were discussed by Nabarro [110], 1309. Thus L has the direction 
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j (Footnote Continued) 

x.. Then dx = 0 in the equations (11.136) and the interaction is only 
i 1       •* 

iD   A      B 
| . present in the case VLT  (L and L are screw dislocations) and in the 

i »a A   g 
case iCT (L and L are edge dislocations with parallel Burgers vector). 

. . 

Our formulas (11.137) are distinguished from those of other 
I 

i authors in two ways.  Cottrell [22], who starts from eq. (11.124), does 

i 

not change the surface integral into a line integral and so in his final 

formula, instead of the dislocation length L, the dimension R of the 

Koehler was the first to calculate the energy of a straight 

dislocation and the interaction energy of two dislocations. 

medium which is perpendicular to the dislocation line and also goes to 

infinity, appears in the logarithm. Eshelby (see [110], pp. 305-306), 

who used different approaches to the problem, e.g., the use of bipolar 

coordinates, obtained the same.  In all cases we get a logarithmic 

diverg ace of the interaction energy per unit length of parallel, 

straight dislocation lines, thus we are forced in reality to calculate 

in the finite body.  We will show that the same is true for the self 

energy of a straight dislocation line. Often this complication can 

be avoided by taking for R or L the approximate value of the average 

distance between dislocations with different sign (dislocation network 

—4 
129)(e.g., 10  cm in undeformed metal). This procedure is not suffi- 

cient. However, practical problems often occur in such a way (§29) that 

either L or R, respectively, cancels or is known from the beginning, 

whereas, in many cases, the approximate value of this term is sufficient 
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because of the logarithmic dependence of the energy on L and R.  Second, 

our formulas are distinguished from those of other authors by the term 

in addition to ln(d/L). This is small with respect to ln(d/L)) accord- 

ing to the assumption (d « L). The difference is caused by the differ- 

ent treatment of dislocation center. Also, it plays a role if we have 

R or L in the logarithm. 

Next we apply eq. (11.128) to two straight dislocations, which 

This will lead us to a method which abbreviates the calculation 

of the self energy very much. 

are parallel and separated by the distance p along the x -direction 

(both of them have the finite length L, Fig. 18) and especially p « L. 

We carry out the differentiation V v" x before integrating and neglect 

AB    A  B 2 
then all terms of this expression which have the factor x -x or x -x 

2 
These terms are less by a factor p/L than the remaining terms, 

as a more intensive investigation shows. 

2  2     2  2 
As we can easily see, only the differentiations d /ox and ö /äx will 

give a contribution 1/x and all other terms vanish.  Furthermore, we 

assume that the Burgers vectors of the two dislocations are equal and 
the dislocations lie in the 
Jplanex = 0.  TL.Hr angle with respect to the line direction is g, 

thus the components of b in the x.- and x -direction are b sin B and 

b cos B, respectively.  So we easily calculate the interaction energy 

AB 
E  according to eq. (11.127) and (11.128) to be 
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a«.  <m_2       _     _     dx_ dx_ AB  Gb ,_m _4_20 . 2av f»p  3  3 
4TT 

(-2- «in2ß + cos20) ff —2 1 (11.138) 

We calculate the integral more generally than necessary here, i.e., 

for the limits 

L/2    ,  V*  _     L/2 
I   dxj ( J  dXg...+ J"  dxjj ...) (11.139) 

-L/2     -L/2 x +« 

and we get exactly 

A J B dx* dx"       .   / 2  .2 
rr-3-~i=2LinL + 4 + L  -VP

2 + L
2  . (11.140) 

X / 2   2 I 
6 + VP  + € i 

E 

2 2 i With e = 0 we get, if we neglect p  in comparison to L and divide 
i 

by L I 

T*8 = 2L. (J2-. 8in
20 + cos

20)(in ^ - 1) . (11.141) 
ZTT m—i p 

This is the interaction energy per unit length of the dislocation 

line.  It differs only slightly from the results of eqs. (11.137) 

for large L, as we can see if we substitute 2n(2L/p)=£n(L/p) + in 2 

into eq. (11.141). 

' Now we assume that both of the dislocations are filaments of 

a dislocation line, whose self energy we will now determine. Then 

we can use the results obtained above directly in eq. (11.129) 

A2 C C 
jAA s %r (=rsin2ß + cos2e) / dxi v<V I *i Y<X1> x -C -c 

•   « 

X (in —— 1) (11.142) 
K-x;| 
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Hi i.-. - i in 11 '.«•-1 ( .i^i' i s     const   <:"'•.! "1'ii-h is the sume .is a linear 

increase Di the relative displacement m the strip 2' (Fig. 9).  Then 

ii' carry <>ul the integration in (11.112) in an elementary fashion, and 

w  nl>; a'l a 

.U  G(b'' )~ . in    2-      2„w ,  1. 1 
i     (—^ sin : • cos S)(£n - t -) (II. 143) 

I"   m-1 2 

ir also 

,AA  liib' )"" , m   .2- 2aw,    h                     ... .... i     • (—- sin B ♦ cos 3)(xn  —-  - 1) (11.111) 
1"   in— I o 2 

for the energy of the dislocation line.  This formula is exact for 

!. -•  it ilooke's I..1.V also holds in the strip 2', which is correct for 

sufficiently small b .  From the logarithmic dependence of ' we see 

that the energy is not very sensitive to small changes of ' and -/(x.). 

We can obtain exactly the same formula. (II. 1-1-1) if we sitbsti- 

3 2 
tute the integral (11.110) in»o eq. (11.138) with .-   0 and e = \   e 

and multiply the result by 1 '!.  I.e., if we substitute 

U**  - - e   e   6 6 r 2 iq    2  ijk npq •; v , (7.7 x t| -=~ dL" dl.  4 dl, dl. 
I, I;   j p  |_m-l  n  k    k  n 

+ dlA di,, i   , I (11.145) 
'I <% :nkj 

instead of (11.129') into eq. (11.129), where L' means that in the 

integral considered, the piece x-e ... x+ s  is excluded from the 

integration, we obtain, at least in the case of a straight dislocation 

line, the exact self energy.  We can justify that this is also true to 

a good approximation for a curved dislocation.   However, the integrals 

The most important point is that the main contribution of a line 
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(Foo t no t e Con 11 nued) 

element is its long range stress field.  However, in (11.145) all parts 

of the interaction effects of an element with other than nearest neighbor 

elements are exactly included.  However, the part of the effect due to 

nearest neighbors does not depend on the curvature of the dislocation 

if the radius of curvature is sufficiently large with respect to e. 

But (11.145) is exact for straight dislocations. 

(11.145) can be evaluated in many cases where we cannot do the integra- 

tions of (11.129') with a reasonable amount of work. This is the prac- 

tical importance of the calculations shown here. 

A remark to eq. (11.144). The energy T^ per unit length of 

the dislocation depends only logarithmically on L.  E.g., in many cases 

we have to consider the bending of an initially straight dislocation 

line during which the length of the dislocation is not greatly changed. 

AA 
Then we can neglect the dependence of T  on L and ß to a good approx- 

AA 
imation, and we find the energy proportional to its length.  T  is 

often called the "line tension" of the dislocation by analogy with the 

conditions of a stretched string.  E.g., we can derive a differential 

equation for the vibration of such a dislocation which has the exact 

form of the equation for a vibrating string.  For this see the papers 

of Eshelby [35] and Koehler [72]. 

In the last two sections we considered dislocations in an infin- 

ite medium.  In practice we always have finite bodies, and in some cases 

the results for the infinite medium does not represent a reasonable 

approximation to reality. (This is especially true for problems with 
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-a. .i -, ".t itislc" .a ums. )  I'll cn »e have additionally to solve the boundary 

value problem.  These problems were tieated very successfully by Dietze 

[163| and I.elbfrled an« Diet/.e [171].  Seeger reported about this in the 

appendix, see [13-1], i> "fio.  These are dislocations in bodies which are 

bounded by plane or  circular cylindric surfaces.  In these cases, gener- 

ally, solutions in closed form were found.  Here the reflection proce- 

dure used by Leibfried and Dietze [1711 is of special interest.  Further- 

more, see also EsheLby and Stroh [167], 

§19.  Forces on Dislocations and Other Elastic Singularities. 
The Dislocation as an Elementary Source 

of Self Stresses 

The problem of the forces which a stress field exerts on elastic 

singularities, especially dislocations, is completely unknown in the 

classic theory of elasticity.  However, it has its analogy in electro- 

dynamics, where we have simple formulas for the forces on linear current 

elements, magnetic dipoles, etc. The formulas which we will derive in 

the following are almost as simple. 

The great importance cf such considerations is obvious for the 

theory of dislocations:  The motion of the dislocations, therefore the 

plastic deformation of the material, occurs under the influence of 

externally applied stresses. This influence must attain a certain 

level first to develop dislocations and second to maintain their motion. 

After preparations of Mott and Nabarro [105] and Leibfried [88], 

Peach and Koehler [115] succeeded in deriving the general expression 

for the force which the line element of the dislocation experiences at 

the point x in the stress field c(x). This often used formula is the 
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fundamental equation of t..e dislocation theory.  It is somehow similar 

to the formula of the Lorentz force on an electric current line element 

in the magnetic field. 

We define the force dK s (dK.) on the line element dL. of a 

dislocation of the Burgers vector b as follows:  -1W is the work done 

by the external forces during a displacement, dx , of the dislocation 

element; dW is the simultaneously occurring increase of the elastic 

energy of the body.  Then dK is defined by the equation 

- (dWa + dW1) = dK • dx (11.146) 

Now we imagine that the displacement is carried out as follows: 

The surface region along which dL will move is di = dx x dL.  (Then 

relative to the motion dL is a right-hand screw boundary of d£,) We 

cut open along df_ and in order to avoid a displacement, apply tht forces 

dfjü to the cut edge and - df«a on the other cut edge, respectively. Now 

ve  consider both of the cut edges as part of the surface of the x>dy. 

(The remaining part is the initial surface, i.e., now the body is 

doubly connected, the internal forces become external through this 

operation.) 

Now let the relative displacement of the glide vector £ = - b 

of the cut edges. This means a motion of dL along dx.  If we consider 

this displacement to be virtually infinitesimal in the sense of the 

principle of the virtual displacement, then, since the body is in equi- 

librium, there is no net work done, i.e., 

dW + dW + df • o • b = 0 (11.147) 
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[Jy  i-tnnp.ii■'. son  with  eq.   (11.1-16)   if  we consider  that 

id\   •   ill.)- '       cix  •   (ill.   •   c) ,   it   follows   that 

dK       I'I    .   j •   b (11.148) 

or 

dK,        e. „   dL.   b, o., (11.148') 
k ijk       l     £    j£ 

This is the formula of Peach and Koehler.  The only assumption we used 

was that the displacement  -b was virtually infinitesiiu 1 in the sense 

of the principle of virtual displacement.  This assumption is not 

exactly satisfied for finite |b|; thus, we have to consider eq. (11.148) 

as an approximation (however in most cases sufficient), a., is that stress 

we will measure at the point x of the line element if we carry out the 

known cut.  This a. .   includes besides the stresses caused by the exter- 

nal forces and other sources of internal stresses, also those stresses 

caused by all the other line elements of the dislocations at the point 

x; furthermore, it includes the part of the stresses with which the line 

element reacts, e.g., due to the free surface or other boundary surfaces 

in the body to itself.  Finally, eq. (11.148) holds for arbitrary inhomo- 

geneity of the elastic constants in the body.  By a method similar to 

that of Eshelby (see below) Rieder [124] showed that eq. (11.148) also 

is true for quasi displacements.  The extensive applicability of 

eq. (11.148) is based on the fact that it is only a consequence of the 

very general principle of virtual displacement.  Equation (11.148) is 

sometimes mentioned in context with the theorem of Colonetti [134,108], 

in S14, which reads for this case, that under certain conditions (Hooke*s 

Law; no other source of internal stresses than the considered dislocation; 
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elastic homogeneity) dW - 0.  But we should notice that the truth of the 

theorem of Colonetti for the medium considered is no assumption of 

eq. (11.148), 

The derivation of eq. (11,148) does not require the stress 

tensor to be symmetric.  We will show an important result of this fart. 

We ask which stresses are able to bring a planar distribution of crossed 

screw dislocations as in Fig. 16c, into motion as a whole perpendicular 

Such an arrangement of dislocations has a great stability in 

practice for it completely cancels the long range stress fields of the 

contributing dislocations (§23). 

to their plane (e.g., x1 = 0)? I n this case the dislocation tensor 

dL. b. = a .  in eq. (11.148) has only the components a_„ = a_ ■= ot = a . 

So we obtain 

*1 = °22 Q32 " «33 a23 = *°(ü32 " V (II'149) 

I.e., the dislocation motion similar to that of Fig. 16c can only 

occur if the stress tensor is anti-symmetric. We will now mention 

examples of the fact that asymmetric stress tensors really occur in 

crystals. 

In ferromagnetic crystals we have a spontaneous magnetization 

in a favored crystallographic direction which minimizes the free energy 

I 
of the crystal. An external magnetic field can rotate this magnetiza- 

tion into a more energetically unfavorable direction. One of the 

magnetically favored directions of the crystal tries to rotate into 

the new direction of magnetization, therefore the external magnetic 
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field ».•;■ vs [Dtfj ie.s on the volume elements, the result of which are 

:>..symmetric : r-ess« s  According to a  remark of Rieder [12-11, it would 

be possible In tlu most favorable case for the force to develop to 

start a motion of a grain boundary of the kind mentioned earlier. 

We are also able to produce such torques with currents, which 

may be very small, :n a crystal, in the case where strong anisotropy 

of electrical conduction exists.  However, we believe that large dif- 

ferences between the free energy of two crystallites separated by a 

grain boundary (e.g., such as during recrystallization, phase changes 

and similar procedures) such strong asymmetric stresses can be pro- 

duced that the grain boundary moves into the crystallite with the 

higher free energy.  Recently, Rieder [124] described briefly how we 

can treat such asymmetric stresses in the theory of elasticity. 

However, we assume that Cosserat's strain torques, neglected by Rieder, 

have an important influence on the real circumstances.  Investigations 

of the above phenomena in crystals seem to be worthwhile problems. 

Now we will describe another important application of the 

Peach-Koehler formula. L is a small, plane dislocation loop, not 

necessarily circular, with the Burgers vector b..  In the region con- 

taining the loop there are no body forces, thus V a. . = 0.  We obtain 

the total force on this loop in the stress field a. .  by integrating 

eq. (11.148) along L. Applying Stokes' theorem and expanding a  in a 

Taylor series about the center x = 0, we easily obtain 

Kk= Vji|o JJ njV*+ V.ffji|o // VjV + • • • (II-150) 
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Ler f - 0 and simultaneously increase b. so that the integrals in 

(I!.150) remain finite.  ThU3 f becomes t point and n.b.df means 

that both of the points on the positive and negative side of £  suffer 

the relative displacement -b. =  g .  So we define the "displacement 

dipole" Qj^ by 

9il S  llm II ni«§AS (11.151) 

and similarly the displacement quadrupole Q .. by 
mjJL 

%is\^II\niezdf (II'152) 

The sign in eq. (11.151) is so defined that a positive dipole 

Q  causes the cut edges to be drawn apart. Symbolically <- - - - ->. 

Previously we called a force dipole P  positive if it was derived from 

the limit of two point forces <------->. 

Now we will compare eq. (11.151) and eq. (11.122). There we 

recognized that the expression -c.... ni
b
i
df is an infinitesimal force 

dipole. An infinitesimal displacement dipole can be written according 

to eq. (11.151) -n b.df.  I.e., for the force dipole and the displace- 

ment dipole we have the relation 

Pij " cijkX %l (II'153) 

Summarizing, we call P  and Q  an "elastic dipo1e." 

However, it should be noticed that this is only true if the elastic 

constants of the body are homogeneous in the surroundings of the dipole 
i 

f and also at its point of application. This is included in e^.. (11.122) 
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: I   -l.i. .,: i>!i    loon    (11.1 Oil) 

N,)..     i    i .in   .'. r j it-   tlit1   lot.11   t'orre   .•.''. ich   .c'.-   mi 

1 

k ) i.     k      i <. nvi A.     k     in    j i 

ih.i   lorn of   i h l s t'C'aiion given  in  the author's original   paper 

iSJI,   K       ijrad   .. ■   ,  Q   , J . ,  Q   „*...)   is  noi   w-'y   convenient   in 
L *     ) l in    ,1 *     m.i / 

':;<■   lol lov.! HI,   respect.      It   must   be   indicated   that   beloi <   carrying out 

:!-.»• miil t ipl u-nt ii>n   in  the parentheses   the differential ion,  grad j., has 
J* 

11) lie dor.e. Also the torn of eq. (1.151) could lerct to erroneous con- 

. lusions about tin- ph\sicol meaning of the terms in parentheses.  (See 

'..-lov.. ) 

In the following discussion we will no longer consider quadrupoles. 

i'hus tho force on a displacement dipole itself becomes 

K. --- Q. ■ 7. 3.. (11.155) 
k   jt  k JJC 

Such a force also produces antisymmetric displacement dipolcs.  However, 

■.'.t also will not consider this further, as these are not as important as 

symmetric displacement dipoles ["82J.  In the following, Q. . is a sym- 

metric tensor.  By substituting e.. for a., in eq. (11.155) according 

to Uooke1s Law and considering (11.153), we obtain for the force on 

a force dipole 

K, = P. . 7, e. . (11.156) 
k   IJ k ij 

Also this equation only holds if the elastic constants are homogeneous 

within the region of the dislocation loop, which is equivalent to the 

dipole.  An example should clarify this: 
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(Footnote for preceding page) 

The homogeneity is violated if, as the limit of (11.151 says, 

the relative displacement g goes to infinity.  I.e., initially eq. (11.156) 

are only true for dipoles of infinitesimal magnitude. Also the Peach- 

Koehler formula holds exactly only for this case.  The conclusion as to 

the truth of eq. (11.156) with a dipole of finite magnitude follows 

below. 

In a body II a small region I of another material is constraiut.fi 

so that we can relate the boundary surface f between I and II with its 

normal vector n to the displacement jump g_ according to eq. (1.77). 

In this case n g is the related density of the displacement dipoles 

on the boundary surface, and Jjn.g df = Q.. represents the total 

displacement dipole.  We let the volume of the inclusion decrease to 

zero, while b. simultaneously increases so that Q.. remains finite. 

The related force dipole (we assume that the higher order poles all 

vanish) indicates the forces which the constrained region I exerts on 

its surrounding.  For a given displacement dipole, these will become 

larger as the inclusion becomes harder.  It is true that we can write 

down an eq. (11.153), but in this we are not allowed to identify c  . 

as the elastic moduli of I or II, but we have first of all to solve 

a boundary value problem on the boundary surface f to get the right 

value for e^. 

For practical applications of these considerations (§31) the 

case in which elastic homogeneity is violated at the point of the 

inclusion is of special interest. Then eq. (11.156) but not eq. (11.155) 
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holds.  This can be clarified best In connection with a method with 

which Eshelby determined the force on elastic singularities in an 

elastic field. 

A body with the surface 8 is stressed by surface forces 

n.c' , which cause displacements s* and stresses o^ in it.  Further- 
i 1J i ij 

more, it contains a singularity at the point x*, which causes an 

The term "singularity" is used here in a general sense, e.g., 

it can be a number of singularities or an arbitrary distrubance which 

is located in a partial region of the body. 

S 8 
additional displacement s and stresses o , and another singularity 

f     f 
with the related values s and a    . The force on the singularity is 

defined by a relation equivalent to eq. (11.146) 

K£ * - (dW
a/dx^ + dWi/dxp a KJ + K^+K! (11.157) 

where dW dx^ has two parts:  -K# = dW /dx\    is the so-called "image 

force," i.e., the force which the singularity puts on itself via the 

t    t 
surface; -K. = dW /dx, is the force resulting from the change of the 

interaction energy between both of the singularities.  In addition, the 

truth of the previously mentioned theorem of Colonetti is assumed for 

the medium considered. First of all we have 
s ÖS 

dw* ■ dxi ff <j 4 dsj (II-158) 

ÖS 
KH-KJOxTdsj (II-159) 

S        *J   UA£ 
o 
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Therefore it is important for this part to know which additional 

displacement the surface of the body suffers during a displacement of 

dXf due to the singularity. The related expression for K, was 

derived by Eshelby 

a 8 

K5 ■ // <, 5xf dsj (II-160) s     * 
o 

This force is interpreted as the action of the image foice on the whole 

surface.  Since the expressions (11.159) and (11.169) are completely 

independent of the existence of the second singularity, we can contract 

the integration surfaces S without changing the value of the integral 
o 

to a closed surface s, which only surrounds the movable singularity. 

After some calculation we obtain ( ,1 means differentiation with 

respect to x.) 

a   b  I*I*        a  b °°      <*    b  » h + Kr- JT [(8i + si)cw - (*u+ Vsi,x3dsj (II-161) 

00    09 

where s , o     are the displacement and stresses of a singularity of 

t 
an infinite medium.  Eshelby succeeded in proving that the force K. 

can be represented in the similar form; thus the total force becomes 

vlf^v-vlrt (II-162) 

a   b   t 
where s s s + s + s and similarly o .  Equation (11.162) can be 

written after some calculation in the form 

h*tt»n*8y    Mjis-aij8i,i + 5aikeik6ji (II-163) 

s 
By analogy to electrostatics, Eshelby calls the asymmetric tensor M , 

the Maxwell tensor of elasticity. 

. . ■   ' • 
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The eqs. (11.162) and (11.163) are generally true. Their 

application to point singularities are of special importance. However, 

it does not cover the line element of the dislocation since we can not 

have a closed surface s which lies completely in a region without self 

stress sources.  For our use the importance of Eshelby's equations is 

that the singularities used need not necessarily be defined at the point 

oi application but at some distance from it (by the displacements which 

they cause there if it is an infinite medium), where clearer conditions 

are given than at the center of the singularity.  E.g., it is of no 

00 

significance if the force dipole (this governs the displacement s 

according to eq. (11.89)) is caused by a soft or a hard inclusion. 

OB 
Only the magnitude of the displacment s which it produces on the surface 

S is important. However, this is proportional to the force dipole accord- 

ing to eq. (11.89).  Hence, we can conclude at once that eq. (11.156) 

holds generally, for if it holds for one case (no inhomogene!ty at the 

location of the inclusion), then it also must hold for an arbitrary 

inhomogeneity. 

Furthermore, in eq. (11.162) we can expand a  and s in a 

Taylor series and obtain our formula (11.156) in the case of the dipole 

after some calculation [83].  Simultaneously this is the proof that 

eq. (11.156) is also true for a finite dipole force.  Eshelby [38] 

carried out the calculation for the special case of the so-called 

dilatation center (see Love [95]) P  = P  > 0, which is of special 

interest, since atoms of type B can be described as such centers in 

the lattice of atoms of type A (131). 
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Now we can determine the work done by the force K In 

eq. (11.156) during a change of position of the dipole fron a point 

where the strain la zero to a point where the atrain is c . and we 

obtain 

. I \ V\ -1 Vk'ij*. = pu J" VJJ
-1

. ■ Vu <n-164) 

f 
Obviously this work is independent of the path. Therefore the 

i I 
expression, 

[ U " " PiJ «ij (II'165) 

can be taken to be the potential energy of the dipole P. . in the 
It J 

f strain field c. .. In case P. . is the only self stress source, P. . t. • 
ij ij ij ij 

is the change of the potential energy of the boundary forces plusthe 
I 

I change of the self energy of the dipole caused by the changed inter- 

action between it and the surface. The sign in eq. (11.165) reason- 

ably indicates, that e.g., a compressed inclusion (P  > 0) in a 

I 
compressed part of the body (c  < 0) causes a positive energy. 

Furthermore, we can see that we will not get such simple formulas as 

(11.156) in the case of volume forces, since such forces do not have 

potentials in general, and so we will not get an integral J* K. dx., 

which is independent of the path. 

From eq. (11.165) it is simple to derive formulas for the 

torque L on a symmetric dipole P .. If we write, corresponding to 
ij 

eq. (11.90), P . « J^P,, because dL = d£ X 1 and dP = d6^ x P,1 

Here we assumed that the self energy of a dipole does not 

change during the rotation. 

- •-■■>■>■ ?«**«aMNP"|M0g 
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:iien the change of P      for a rotation through an angle d5    Is 

dPij , d^P. * l^ -  ccui iiPj ♦ cJk. 2^)^ 

"ikX PXj *  «Jk* Pii)d5k (II'l66) 

On the other hand, the change of the potential energy of the dipole for 

.u: infiiutesimal rotation is 

dl = - L.d:   - e. dp  = - «4.(€,„.!»  + C.fcJP. .)d5.       (11.167) k k     IJ  ij     ij  iki ij   jkl ii  k 

Because of the svmmetrv of c  and P , at once we conclude 
ij     ij 

L, - 2s., . P.. t (11.168) 
k    lki *j  ij 

The conditions under which this formula is true are the same as for 

eq. (11.156). 

In the case of an inhomogeneous inclusion (i.e., the elastic 

homogeneity is disturbed at the point of the inclusion) another effect 

appears, which was first properly investigated by Eshelby [38] and 

Crussard [27], the "polarization" of the singularity.  The simplest 

See also additional papers of Crussard [28], Eshelby [40] and 

Teltow [151]. 

example is a stress free body with an inclusion of another material 

which fits in without any restraint.  If we now apply surface forces 

ind 
to the body, then a force dipole P   is induced in the inclusion, 

for which we also can use eq. (11.156), since Eshelby was able to show 

that we again end up with an expression like (11.163). 
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It is convenient to define the polarizability, R11k«> by the equation 

i PUd " Rijhl \l (II-169) 

for determination of which a boundary value problem with respect re» the 

boundary surface mist be solved, even for the smallest inclusions. For 

the case of spherical inclusions and elastic isotropy, we get elementary 

1 solutions according to Lshelby [38], [40].  Now it is obvious that 

Eshelby was now able to show that the stress field induced by an 

ellipsoidal inclusion is homogeneous if the induced stress field is 

homogeneous at a large distance from the inclusion (holds also for elastic 

anisotropy). The similar result for the polarization of an ellipsoidal 

dielectric is well known, 

we can represent the elastic displacement field of an arbitrary point 

source of internal stresses in the infinite medium by equation 

^ = VVki + pjki Vksii + --- (II-170) 

from which we can determine the internal stresses by the usual method. 

A quadrupole is nothing other than two dipoles close together; a 

similar analogy holds with poles of higher order, i.e., we can describe 

every self stress source by a suitable combination of force dipoles. 

But these are nothing other than infinitesimal dislocation loops. 

Therefore, the theorem mentioned in the preface holds: All self stresses 

in the continuum are caused by dislocations. In §14 we stated all self 

stresses are caused by incompatibilities. This holds eve;« now and is 

compatible with the theorem mentioned above. For according to 
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eq. (11.51) incompatibilities have their origin in dislocations. Thus 

we can call either the dislocations or the incompatibilities the ele- 

mentary self stress source. However, the statement identical to 

eq. (11.17) is more consequent: Dislocations are the vortexes of 

elastic distortions as forces are the causes of stresses. 

On the other hand we can also describe continuous distribu- 

tions of self stress sources, dislocations, by a three-dimensional 

distribution of such point sources.  For the same reason we could 

declare the force dipole to be the elementary component in  the theory 

of self stresses. The circumstances are similar to (stationary) 

Maxwell's theory. There infinitesimal current loops and magnetic 

dipoles are equivalent.  But normally the electric current is preferred, 

and only this appears in Maxwell's equations.  In this sense we also 

preferred the dislocation, and thus, in our opinion, we get an 

impressive representation of the continuum mechanics of solid bodies. 
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CHAPTER III 

DISLOCATIONS IN A CRYSTAL 

120 General Statements 

In this chapter we will discuss applications of the continuum 

the ry of dislocations to real bodies, the most important of which are 

crystalline. Physical problems of this kind deal almost entirely with 

single crystals, but when the results are transferred to polycrystals 

as generally happens in the technique, there is almost no success. 

So we will restrict ourselves to the investigation of single crystal 

problems, however, we will emphasize that there are no difficulties in 

principle in applying the continuum theory of dislocations to poly- 

crystalline bodies, and we will return to this soon. 

The main difference between a continuum and a body composed 

of single mass points, as, e.g., a crystal, is that in the latter a 

volume element is defined.  In the continuum the distortion of the 

volume element is the determining geometrical quantity; displacements 

were mentioned comparatively little. In a system of points we primar- 

ily measure displacements, so we are tempted to relate all to this. 

However, it is soon obvious that in general we will not succeed with 

this approach, since we cannot get the required degree of freedom. 

Instead of this we have to consider the relative displacement of two 

neighboring atoms. From the considerations of 121 it can easily be 

seen that the distribution of such relative displacements has three 

141 
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times as many degrees of freedom as the distribution of dislocations. 

Then *e can develop exactly the theory of dislocations in the crystal 

(821), where, however, we do not obtain differential equations but dif- 

ference equations. However, since the number of points (atoms) in a 

crystal is immensely large, in many cases we can replace these differ- 

ence equations to a very good approximation by differential equations, 

and in general we have to do this as we will not succeed in solving the 

problem numerically. 

This approach is especially reasonable for many of the more 

"microscopic" problems of the physics of crystals, in which we investi- 

gate the behavior and the properties of a single dislocation.  With 

macroscopic problems, however, we are interested in the combined effect 

of many dislocations.  In this case it is obvious that we must consider 

certain "physical" volume elements having properties which we will now 

discuss. 

The assumption for the application of continuum mechanics to 

real bodies is that the deformation of the volume elements of the body 

can be measured as a macroscopic ally continuous function of position. 

For this the volume elements must be sufficiently small with respect to 

the external size of the body, for otherwise we cannot formulate the 

differential equation. On the other hand, the glide and climb planes 

are discrete and microscopically considerably far apart, whereas the 

distance between them and the magnitude of the glide or climb occurring 

is subject to random fluctuations.  If a distortion should change from 

volume element to volume element, then it is only possible to speak of 

an average distortion and, furthermore, this will change continuously 
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only if each volume element is hit by a sufficient number of disloca- 

-5 
£ tions. E.g., if the distance between the glide plane is 10  mm and 

I if we consider 1,000 glide planes necessary for averaging the fluctua- 
f 
i   * • tions, then the physical volume element must have a linear size of at 
I 

least 10  mm.  In general we can consider this to be sufficiently small 
y 

with respect to the dimensions of the body. However, with much bigger 

I 
distances between the glide plane in small experimental bodies as hap- 

r 
pens in special cases sometimes, it may occur that the volume element 

calculated according to the rules above is no longer sufficiently small 
*■ 

with respect to the size of the body and then obviously the application 
I 
f of continuum mechanics is no longer reasonable. We realize that the 
l 1 

dislocation theory in the crystal is in general "less exact" than the 
I 

continuum theory of the dislocation; however, it is sufficiently 
1 
I exact to justify its application and even to require it. The inaccur- 

acy of this calculation consists in the fact that we assume that the 

I physical volume elements are mathematically infinitesimal which means 

I that we can apply all formulas of the continuum theory to a real body. 
t 

This approach is very simple and corresponds to the concept of 

t this book. Another viewpoint is that we derive the macroscopic equa- 
ls» 
I 
f tions obtained in continuum theory from the equations of the micro- 

scopic problem by adding the interaction of many dislocations and tak- 
r 

ing an appropriate average.  With this procedure we always remain in 

the crystal. The solid state physicist is used to thinking of crys- 

| • . tals, and for him the crystal is an easy body to imagine. Therefore, 

the transformation from Microscopic quantities to macroscopic ones will 

be presented shortly [22]. 
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In polycrystals, strains generally change discontinuously fron 

one crystal to another, first because of elastic anisotropy and second 

because of the plastic anisotropy of the crystallites originating fron 

the fact that in each crystallite there are only a few discrete glide 

systems (= group of glide planes and related glide directions), which 

become effective at a certain shear stress.  If we want to have a con- 

tinuously changing strain from volune element to volune element, then 

This leads to the conclusion that generally not all crystallites 

start to flow simultaneously. Among others Greenough successfully 

investigated the problems arising from this. 

it can only be an average strain, and we need a physical volume element 

consisting of many crystallites. 

It is more difficult to answer the question of the structure 

curvature.  It is true that we can define the rigid (elastic) rota- 

tion of volume elements with reference to the initial condition of an 

"ideal polycrystal," but the statement of the orientation in this poly- 

crystal has no meaning.  The problem now is whether the rigid rotation 

of the volume element which occurred in the polycrystal (e.g., in the 

absence of elastic strain) changes the state of the body.  Then we must 

be able to prove this experientially.  In investigations of this ques- 

tion, §23, lead to the result that indeed curvatures of the structure 

can be shown in polycrystals. Accordingly, it is obviously possible to 

apply the continuum theory of dislocations in its previously developed 

2 
form to polycrystals. 

2    —  -.-—....    ..   -*        . - 

Prof. U. Dehlinger pointed this out to me. 
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|21 The Geometrical Basic Equation in the Crystal. 
The Microscopic Theory 

We start with a definition of the dislocation in "he crystal, 

which originated with Frank [47]  Figure 19a shows the lattice plane 

of the ideal crystal of Fig. 2, Fig. 19b shows the same for the disturbed 

or real crystal of Fig. 3. The difference of the position vector of two 

neighboring atoms in Fig. 19a and 19b is 6x and 6x'. Now we take the 

sum Z 6x' along an arbitrary closed path X in the real crystal. We 

may proceed from atom to atom starting at the point p', going 7 steps 

in the x_ direction, then 4 steps in the x direction, etc., and on an 

arbitrary path back to P . Then we repeat the same procedure (i.e., 

7 steps in the x, direction, 4 steps in the x direction, etc.) starting 

in the ideal crystal from the point P, corresponding to P' (circuit £). 

With the corresponding step with which we reach P' in the circuit £', we 

do not reach P in K if the circuit was then around a dislocation line 

as the figure shows.  We now state that the path should go around the 

dislocation line in the right-hand screw-sense. Then the vector 

OP £ 6b from the end point Q of the path  corresponding to its starting 

point is characteristic of the dislocation surrounded by the cycled'. 

So we can define the dislocation by use of the "Frank-Burgers circuit"; 

The Burgers vector of a single dislocation is indicated by b 

in previous literature (also in Fig. 19a). From the standpoint of the 

continuum the nomenclature 6b is more convenient (see below). Do not 

look for a special secret behind this nomenclature. 
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b is called the Burgers vector of the crystal dislocation.  Further 

considerations will show that it corresponds to the Burgers vector in 

the continuum. 

Imagine that the dislocation in Fig. 19b moved into the crystal 

from the right.  During this, two neighboring atoms between which the 

dislocation moved suffer a plastic relative displacement 6g_ = - 6b. 

It is necessary to mention that for all the other atom pairs 

■*>g - o is required.  The minus sign goes along with the convention that 

on the one hand the direction of the dislocation line is chosen in such 

a way that X and £ , respectively, become right-hand screw circuits and 

that on the other hand 5g_ is the relative displacement of the atoms on 

the positive side of XT with respect to those on the negative side. 

If we take the sum along £, E 6g_, then we obtain 

E 6g = - 6b . (III.D 
X 

This equation corresponds to eq. (1.12) of 13.  However, we have to 

notice the following:  from the way we defined the cycle, 6b is a so- 

called lattice vector from the very beginning, i.e., a vector which (in 

the ideal crystal) points from one atom to another.  This is a physical 

requirement. The relative displacement of the atoms during the motion 

of atoms must occur such that the regular arrangement of the atoms 

remains except the center of the dislocation: An irregular arrangement 

of the atoms over a surface or'ven more in a three-dimensional region 

would cause a considerable increase in the internal energy of the crys- 

tal and is therefore "forbidden." 
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I 

On the other hand, we can not initially exclude a certain 

three-dimensional extension of the disturbed region in the immediate 

neighborhood of the dislocation.  I.e., we can assume that the atoms 

displaced by a dislocation at a larger distance from the dislocation 

center had suffered the whole relative displacement 5g, but for the 

atoms near the center this is not necessarily true; i.e., the trans- 

fer to 6g from -5g (in Fig. 19b) on the right side of the dislocation 

to zero (on the left side of the dislocation) need not occur abruptly 

from one atom to the next, but, e.g., can appear over a region of two 

or three atom distances. This coresponds to our concept of a disloca- 

tion width 2£.  To include this possibility, we imagine that the dis- 

location is composed of filaments two-dimensionally arranged over the 

infinitesimal thickness db, where the dislocation should be: P db = 6b. 

Each filament gives them a relative displacement of -db of the atoms 

between which it moved. 

1 v' ' 
According to Frank the circuit J.  must be carried out at a 

sufficient distance from the dislocation center so that all disloca- 

tion filaments are within the circuit.  We will not require this in 

our investigations. 

We can consider a crystal in its ideal initial condition, its 

atoms numbered and the relative position of two neighboring atoms indi- 

cated by 6x .  We call 5u initially the imagined relative displacement 

of atoms on the positive side of 6x with respect to those of the nega- 

tive side.  So 6u (x ) is given in the whole crystal, where x is the 
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position of that atom which lies on the negative side of 6x in the 

Initial condition. We allow 6u to be arbitrarily discontinuous, 

especially since the crystal is no longer necessarily connected after 

carrying out the relative displacement. Only it is not allowe that 

one or core atoms occupy the same place. 

Now the question arises: Is it possible at all to bring the 

crystal into such a condition that two atoms always suffered the dis- 

placement difference assigned by 6u . The answer is: In general this 

is not possible. The most important facts we can see on a "crystal" con- 

sisting of only 4 atoms 1, 2, 3, 4. If we prescribe 6u for the pairs 
«I 

of atoms 12, 23, 34, then the position relative to each other is com- 

pletely determined, and the assignment for the lost pair of atoms is 

no longer arbitrary but must be compatible with the first three state- 

ments (Fig. 20). 

The next question is: What are the restrictions on 6u in 

order to produce a state which can be described by 6u ? Immediately 

we see that the sum of 6u along an arbitrary path from an atom (a) to 

another (b) must be independent of the path, i.e., 

£ 6u = 0 (III.2) 

for an arbitrary closed path carried out in an ideal crystal.    From 

eq.   (III.2)  follows the existence of a function of 6u/x )  which can 

be arbitrarily discontinuous till now.    Obviously, u.  is the displace- 

ment of the atom, unique up to a rigid displacement of the crystal. 

By   the equation 

6uj=Ylj6xi (III. 3) 
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the "alcroscof1c" distortion tensor, y s (Y. J, la defined, We 

explain it in the following way: A certain atom la at the position 

x.. Its three neighboring atone in the direction of the positive 

x-axis have the position (in the perfect crystal) x + 6x . These 

four atons which sre the basic triad of a lattice, are enough to 

define and explain conveniently a distortion at the point x . E.g., 

according to eq. (III.3) the distortion y     means an extension of the 

triad in the ^-direction (Fig. 21b). Similarly, we notice that, e.g., 

y  is a shearing of the triad as shown in Fig. 21c. In the case of 

snail distortions, the symmetric part of y     is a pure strain; the 

antisymmetric part is a pure rotation of the triad. 

If we substitute eq. (III.3) into eq. (III.2), then by Stokes' 

theorem it follows 

6 Srf ( curlY>ljeH ciJkT~-=0 (HI 4) 
V 

" curl" should indicate that it is a difference equation in 

regions of atomic dimensions. 

Only distortions which satisfy eq. (III.4), are indeed possible in the 

Euclidean space. 

However, there is a non-Euclidean space for every arbitrary 

distribution 6u ; x are then the coordinates of this space; e.g., 

a curved surface in the case of a two-dimensional crystal. 

The application of Stokes' theorem is also meaningful in the case 

of discretely distributed points and arbitrarily discontinuous relative 
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displacements .'u , as we can show even In the example of four atoms 

in Fig. '21).  Let all points remain in the plane x * 0. Then accord- 

in«; to «>q. (Ilt.3), the following distortions are defined.  For point 1, 

SJJ, ?12. P2J, 92,,f for point 2, B2l, 0g2 for poii.t 3, none, for point 4, 

5  , e    .     Formally we have 

5g    60 60    50 
(curl ft>3i= irj- - Tx7 ; (curl ft»« if - ix7      (II1,5) 

are different from zero or written as difference equations 

(curl |) 

(curl 8) 

e21(2) - 021(D   pu(4) - Bu(i) 
31 

32 

e22<2) - 022(D   pia(4> - B12(D 
(III.6) 

Thus only the distortion components mentioned above appear.  After 

multiplying with 6x 6x , we get Z 6x 0 .  Totally if we write 6F 
12 i ij K 

instead of 6x 6x 

5Fk(curl 0Jkj = Z 6Xi &lj (III.7) 

i.e., Stokes' theorem. 

The previous considerations were purely geometric in nature. 

We have not discussed whether there are reaction forces associated with 

the relative displacement between two atoms. Now we consider the proce- 

dure of the invasion of a dislocation into the perfect crystal of 

Fig. 2 through which this is transformed into the state of Figs. 3 

and 5.  If we make a circuit £ in the ideal crystal and we add all the 

above mentioned relative displacements 6g. between two atoms, we obtain 
Ü 

E 6g = - 6b. 

£     j     J 
(III.8) 
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if X'  is the circuit in the crystal corresponding to £'   after the 

notion of the dislocation, otherwise we get £ 6g ■ 0.  It follows 

Instead of the ideal and the real crystal we can consider only 

an ideal crystal into which a dislocation invaded, however, due to a 

restraint, initially there is no distortion. In this sense we can have 

a dislocation in the ideal crystal. With this consideration, we get 

sinple equations also for arbitrary large distortions. See 110 beginning. 

fron eq. (III.8) that the plastic relative displacement 6g in a crystal 

with dislocations does not satisfy the condition (III.2). However, 
a 

Figs. 3 and 5 show that the dislocation injcrystal is surrounded by an 

elastic strain field. We call the relative displacement of two neigh- 

boring atoms 6a . The total relative displacement which we will now 

T 
call 6s_ is composed of the elastic and plastic displacement 

6s* = 5a + 5g (III.9) 

and it holds for every closed path that 

£ 6s* = 0. (III.10) 
J 

T 
From this the existence of a function a  (x.) follows indicating the 

J   * 

difference of the position of a certain atom in its ideal state and 

its "dislocated" state except for a constant displacement common to 

all atoms. The existence of this function, which need not necessarily 

be continuous, is a consequence of the fact that the procedure which 

transformed the crystal from its state of Fig. 2 into that of Figs. 3 

and 5, is possible in Euclidean space. 

^^WW^iöRSÄSÄfegs^JJ 
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Furthermore, we define the general asymmetric tensor« of the 

T    T 
(microscopic) total distortion 0 * ^n^» °* tne *l**tlc distortion 

P   P 
B -  (9.,) of the plastic distortion £ = (&,.,) by the equations 

U 

6s >L 6v 6aj= Bu 6v *J      piJ    xi (III.11) 

Then first of all we have to investigate to what extent we can 

connect a meaning to the elastic and plastic distortion, since these 

represent procedures similar to 6u and 6g , each of which is not pos- 
J     J 

sible independently in Euclidean space. Now we notice that each proce- 

dure 6u , defined only relative to a triad, can be carried out in the 

Euclidean space, but if we have additional atoms, e.g., a cube of eight 

atoms, the restriction (III.2) becomes effective. Obviously this is 

related to the fact that a triad cannot have a distortion in its inter- 

ior, while it is possible, e.g., for a cube (see below). 

If we substitute the third eq. (III.11) into eq. (III.8), then 

with Stokes' theorem it follows that 

,6 
E 6F ( curl |f)  = - 6b (III.12) 

where F is the surface bounded by K . This result_is then meaningful 

even if the circuit touches only four atoms,  Then we write eq. (III. 12) 

(6curl g*)  = - 6b /6Fi (III.13) 

if we assume that all filaments of the dislocation cut the surface 

element 6F bounded by the four atoms. 

According to footnote 1 of Pg. 151. 
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Apparently 6b /6F is the average surface density of dislocation fila- 

ments in the region 6F . This statement holds even then if a part of 

the dislocation filaments are outside of 6F   if we assume that 6b is 

the total Burgers vector of the filaments which cut 6F . 

In §25 it is shown that we can approximately calculate the 

distribution of the filaments of a dislocation. The result is that 

most of the filaments of a dislocation are within the cross section of 

magnitude J6FJ. 

In order words, 6b /6F is the (microscopic) dislocation density; 
J     J 

we call it a      and write for eq. (III.12) 

curl p = - a (III.14) 

If many dislocations cut the surface F of Eq. (III.12), then the right- 

hand side of the equation is the total Burgers vector of all disloca- 

tions cutting F. 

Because of eq. (III.10) for the total distortion, it holds that 

T      P 
t -S.+ T 
curl £_   = 0 

(111.15) 

(111.16) 

and thus we obtain the (microscopic) geometric basic equation of the 

crystal to be 

curl P = a (III.17) 

This equation states that the existence of dislocations in crystal is 

always connected with elastic distortions since plastic distortions, 
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by definition appearing during the invasion or development of the 

dislocation are not possible themselves in the Euclidean space. 

I will thank Prof. E. Fues for his critical remarks to one of 

my previous papers which leads me to the description given above. 

§22 The Geometric Basic Equation in the Crystal: 
Transfer to the Macoscopic Theory 

In this section we will carry out the transfer of the micro- 

scopic quant ties to the macroscopic ones.  For this we define first 

all the macroscopic (= physical) volume elements, AV, which should be 

an ideal crystal of the minimum size required in §20 in its initial 

state.  By the term "element" we will imply that the experimental body 

has a very large number of such volume elements. 

After this we will consider the dislocation tensor.  It is 

obvious that we have no longer to consider the filament structure of 

the single dislocation, but we describe it as formerly by its unit 

tangent vector and its Burgers vector; i.e., by t.6b .  Because of the 

huge amount of dislocations appearing in all crystals, we no longer can 

state the direction and the Burgers vector of each line. 

Now we are concerned with how to describe as simply and as com- 

pletely as possible a state with very many dislocations lying close 

together.  Apparently this is possible if we indicate at each point x 

ab a 
of the crystal how many (N ) dislocations of direction t and of 

. b 
Burgers vector ob pass the oriented surface element AF at x. The 

surface element should be of such a size that it is crossed by many 
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dislocations so that an averaging Is meaningful.  In other words, the 

ab 
number N  only changes slightly from element to element. Then we can 

say chat dislocations cross the surface element with a certain density. 

Now we call the total Burgers vector of all dislocations inter- 

secting AF, Ab. It is 

Ab * I Nab 6bb 

a,b 
(III.18) 

.ab 
We notice that Ab does not change if we double the number N  and 

divide the related Burgers vector by two. The limiting process to the 

continuous distribution must be carried out so that we let the number 

ab 
N  increase and decrease the Burgers vector to zero simultantously 

so that the total Burgers vector Ab remains constant. 

This limit was first derived by Nye [13]. 

In a macroscopic theory we can not handle a discrete distribu- 

ab 
tion, since it is represented by the number N ; i.e., we must restrict 

ourselves to stating the total Burgers vector Ab.  With crystals this 

is a real loss; however, in general, this can be compensated for by 

additional crystallographic considerations. This is a consequence of 

the fact that in this case the Burgers vector can have only discrete 

2 
values and thus dislocations indeed appear as separate phenomena. 

2 
With only a few exceptions the theorem holds that the Burgers 

vector not only must be a lattice vector (121), but also must be the 

smallest possible lattice vector, thus the disturbance in the disloca- 

tion center does not require too much energy (which is proportional to 
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(Footnote Continued) 

2 
b 118). Then in the primitive cubic lattice three Burgers vectors are 

possible; in the face centered cubic lattice six are possible. 

Therefore in many cases it is of special interest to know the character 

and distribution of dislocation lines as they were described by 

eq. (III.18). 

If we know the total Burgers vector of all dislocation lines 

crossing AF for each surface element AF, then we are well informed about 

the dislocation state with the above mentioned restriction. Now we can 

define the macroscopic tensor of dislocation density a = (a    ) by use 

of the equation 

Ab = a      AFi (III. 19) 

Since by assumption the dislocation curve must be quite continuous in 

the neighborhood of the surface element, we can assume that the dislo- 

cation is straight within the volume element AV. Furthermore, we assume 

that the dislocations at.,  cut the surface AF perpendicularly. Real 

dislocation lines do not do this in general, but we made the distribution 

of the total Burgers vector of the single dislocation lines of differ- 

ent types according to eq. (III.18) to be a matter of crystallography. 

Our macroscopic dislocation lines a  .  are all directed in the i-direc- 

tion and have all the Burgers vectors in the j-direction. Therefore, 

the diagonal components of a. . (x) at the position x represent, as 

previously, screw dislocations while the other components represent 

edge dislocations. 
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The macroscopic dislocation density in the crystal is a very 

well-known quantity; it represents directly a group of lines as in 

Figs. 3 and 5, whose flux through an arbitrary surface F, i.e., the 

dislocation flux, is equal to the total Burgers vector of all disloca- 

tion lines passing F and according to eq. (III.19) 

b = JJ  AF • a (III. 20) 
~"  F  ~" 

Now we will investigate the relation between microscopic and 

macroscopic distortions. For this purpose we imagine that each pair 

of neighboring atoms in the crystal in its initial state suffers a 

relative displacement 6u similar to the cases mentioned above. Now 

let 6u be distributed continuously in the interior of a volume element, 

dV (in contrast to AV we used before) which contains many atoms, however, 

it may change discontinuously from element to element. Figure 22 shows 

a simple example. 

We can describe the geometric position of all atoms of Fig. 22b 

by the microscopic y.    defined by eq. (III.3) as a function of the posi- 

tion of the atoms in their initial state.  Then we get y      and y      dif- 

ferent from zero, where y      only depends on x , whereas y      is only 

different from zero for those atoms which bound the element dV on the 

+x side, and there it only depends on x . The condition (III.4), which 
X A 

must be fulfilled everywhere, can be written 

DY21 
6x, 

6 Yn 
= 0 (III.21) 

From eq, (III.3) we car. derive the function u from the known y 

up to a rigid displacement of the whole crystal. 
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Another description of the state of Fig. 22b would be always 

to give the distortion for the whole element where it is constant accord- 

ing to the assumption.  We can consider this as a definition of the 

macroscopic distortion.  The diagonal components are measured as 

functions of position in the initial state by the ratio of the exten- 

sion of the element to its initial length, the remaining components 

are measured by the tangent of the shear angle.  In the interior of 

a homogeneously distorted volume element each atomic triad has the same 

magnitude of (microscopic) distortion as the element (macroscopic). 

For an element of Fig. 22b (macroscopic) only y      is different from 

zero.  E.g., dx. = n 6x. is the distance of the center of mass of two 
l      l 

neighboring elements dV in the initial state.  Then the magnitudes of 

dv2l and ^91 on the DOVmdaiT surface are equal, so the magnitude of 

dy21 dxi iS equal to the value ^Y2i
/n^xi = 6Yii/n^xo on tne boundary 

surface.  With a given macroscopic y      we can determine the micro- 

scopic y  on the boundary surface up to a constant.  Simultaneously it 

follows that the statement 

(curlvJ^se^^-./O (111.22) 

is in general true for the macroscopic y    , in contrast to the micro- 

scopic v,.. The condition that curl y -  0, reads in the example above 

obviously 6y ../^x = 0; in other words, a varying displacement jump on 

the boundary surfaces of the volume elements is not allowed.  We will 

refer to this again soon. 

The previously assumed homogeneity of the distortion within 

a volume element consisting of very many atoms does not occur in the 
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real process of plastic ceformation. However, we can assume for 

a sufficiently large volume element dV that at least an average homo- 

geneity exists, which can be shown by the fact that the surface of a 

marked volume element does not change very much during deformation or 

during relaxation after cutting the volume element (otherwise the 

assumption mentioned in §20 for the application of the continuum theory 

is not satisfied). 

Consequently we can identify the physical volume element dV with 

the mathematical volume element dV used in §3, which is the cause of 

the uncertainty we discussed in 120. At this element we define, as 

previously done in 121, the tensors of macroscopic total distortion, 

T   P 
plastic and elastic distortion 0  , 0  , 0. ..  We found above that 

the equation 

curl 0=0 (III.23) 

is necessary, in order that the body not have cracks after the deforma- 

tion.  We see that the macroscopic equation states something quite 

different than the microscopic eq. (III. 16) 

curl 0T = 0 (III.24) 

1 T 
The function 0_ restricted by eq. (III.23) is so defined that 

it never requires two material points to occupy the same position. 

If we call a region in which parts of two volume elements exist simul- 

taneously (which is only possible in the imagination) such that they 

overlap each other, a "negative crack," then we need not discuss this 

case extensively in addition to the normal "positive crack." 
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This aakes the operation possible in Euclidean space. There the develop- 

aent of cracks is not mentioned, for indeed the expression "crack" is 

not defined in a system of discrete points.  In contrast the way in 

which the distortions are defined in the macroscopic theory ensures 

from the very beginning that the procedure is possible in Euclidean 

space,  and this not only holds for the total distortion but also for 

the elastic and plastic distortions. Additionally, we have the restric- 

tion (III.23) which prevents the development of cracks. 

In other words, a deformation which can be described by a 

macroscopic distortion tensor field can generally be carried out in 

the Euclidean space. 

We will notice that also the macroscopic plastic distortion is 

a procedure which can be carried out by itself in the Euclidean space, 

however, then in general the connection of the body is destroyed, since 

p 
curl 8 4  0.  From the remarks following eq. (III.22) it follows that 

p 
where curl B / 0, a linearly varying plastic displacement jump occurs 

between the volume elements, and according to §8 this is always the case 

if dislocations come to rest with constant density.  If in the initial 

state we carry out a circuit around the surface element AF, which is 

composed of many elements dF, then we obtain similar to 13 the total 

Burgers vector of the dislocations which came to rest 

Abj - - § dxt B^ = XT dFk (curl g^ = - AF^curl gf)^      (III.25) 
£ AF 

p 
if we assume a homogeneous distribution of curl B in the region AF. 

By comparison with (III.19), we obtain again 
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curl ft* = - a (III.26) 

and after combination with «q. (III.23) the macroscopic basic equation 

curl £= a (III.27) 

Here we made the assumption that the dislocations would come 

to rest between the volume elements.  In reality they came to rest in a 

three-dimensional manner rather than two-dimensionally. By taking the 

limit dV •* 0, the two-dimensional arrangement between the volume elements 

becomes a three-dimensional arrangement. 

We discussed the case of linearly varying plastic displacement 

jumps, but not the case of constant displacement jumps.  With such jumps 

the volume elements are displaced macroscopically relative to each other; 

i.e., the displacement of the point of the medium becomes macroscopically 

discontinuous. This case may not be of any significance so we will not 

consider it any longer. 

§23 Plane Dislocation Arrangements in Crystals 

This section will consider the application of the boundary equa- 

tion of 18 and 9 to a crystalline body. The boundary between two crys- 

tallites of different orientations is called a "grain boundary." Such 

grain boundaries are developed, e.g., during the growth of crystallites 

in the melt. The growth is initiated from randomly developed nuclei. 

If two neighboring nuclei with different orientations grow, then they 

will finally touch each other with different orientations, and along 

the boundary a region of atomic disturbance is created.  If the dif- 

ference in the orientation is less than 20°, then we can distinguish 

single dislocations, which make the transition from one orientation to 
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the other.  Figure 23 shows a simple example. The related dislocation 

arrangement is schmatically shown beside it.  Here it is a wall of 

Often an edge dislocation perpendicular to the paper plane 

is designated by the symbol I , The bars indicate the glide plane and 

the extra half plane introduced by the dislocation in an obvious manner. 

Therefore the dislocation in Fig. 19b would be indicated by | . 

edge dislocations whose Burgers vector is perpendicular to the wall plane. 

However, a wall of edge dislocations with the Burgers vector in the plane 

of the wall does not give a difference in orientation (Fig. 24).  Such 

dislocation walls occur in phase boundaries (132) and with variable 

2 
density as a barrier in the glide plane if a resistance blocks the 

further motion of the dislocations. 

2 
This we call a "pileup." The calculation of the dislocation 

distribution in the pileup is an interesting mathematical problem which 

was solved with different assumptions by Eshelby, Frank and Nabarro 

[166] and by Leibfried [189].  Besides others Leibfried showed that 

we can take instead of a discrete dislocation distribution a contin- 

uous one to a good approximation even if the pileup contains only a 

few dislocations. Then we get the equilibrium-dislocation distribution 

with respect to the externally applied stresses from a linear integral 

equation. The problem following from this, to calculate the self stresses 

related to this equilibrium distribution, was generally solved by Haasen 

and Leibfried [169] by integrating in the complex plane. The stresses 

can be obtained essentially by differentiating the dislocation distribution. 
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(Footnote Continued) 

Leibfried [172] furthermore investigated pileups of circular disloca- 

tions in the glide plane. The applications of all these calculations 

deal with the hardening of metals. 

First we will consider grain boundaries. Froa 17 we know that 

waPs of intersecting screw dislocations can also be used as grain 

boundaries. Unfortunately, these are very hard to draw. Practically 

two problems occur: 

1. Given the difference in the orientation, find the disloca- 

tion arrangement which is developed along the grain boundary. 

2. Given a dislocation wall, find the difference in the 

orientation of two neighboring grains. 

The general solution of this problem is due to Frank [46]. 

We decompose this problem into a continuum theoretical part and 

a crystallographie part.  In the former we determine the macroscopic 

dislocation density or; in the latter by use of this and the crystallo- 

graphic circumstances we calculate the microscopic dislocation arrange- 

ment. 

We can at once write down the solution of the continuum theo- 

retical part. A grain boundary is only defined by the difference of 

the orientation of the grains according to the facts mentioned above. 

No macroscopic deformations are implied by this.  (Microscopic elastic 

deformations caused by the finite magnitude of the Burgers vectors in 

the crystal need not be considered in the continuum part of the problem.) 
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In our case the elastic distortion 0 . is simply a rigid rotation u> 

of the volume elements and eq. (1.67) becomes 

«ijk "l %e|n " 
€ijk ni "jllj = \t (III. 28) 

In the case of large differences in the orientation, we use for uu . 

a rotation tensor according to eq. (1.94). Its symmetric part is 

negligible for small orientation differences, and we can use instead 

the rotation vector related to its antisymmetric part 

'"ij = «ijk "k 1      2    ijk    jk 

Equation (III.28)  then becomes 

•ijk «j/m ni »J^ " €ijk «jA» \ Wm\I ' "ki 

and with the decomposition formula (A.2)' 

(III.29) 

(III.30) 

(6ki nm % " ni V!n " (6kX nm %  " nt Vlj = \l        (III'31) 

This is obviously the boundary surface form of eq. (1.59), 

In Fig. 23 only the components n.. and ID were different from zero, 

therefore the related dislocation density or  has only the component 

(nj = 1) 

a, 31 "s| + ou. 
II 

(III.32) 

which are exactly the dislocations formed if the rotation between two 

crystallites is about an axis perpendicular to the boundary surface 

(twist boundary in contrast to the above mentioned tilt boundary), 
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thai we get intersecting screw dislocations. E.g., If the rotation 

axis is parallel to the x, -direction (only n. and u> are different from 

zero), then we obtain fro« eq. (III.31) only 

«22 - «33 " «l|n --l| 
(III.33) 

different from zero. 

We will show now that indeed these grain boundaries do not 

cat e macroscopic stresses. For this it is necessary and sufficient 

it.at the surface incompatibilities vanish. From eq. (1.87) at once 

follows that because of the constant surface density of the disloca- 

tions in the boundary surface T\_ =  0. For T) we have from eq. (1.90) 

=   -    s 
7] = (a x n) .  If i are the cartesian unit vectors, then we have for 
**       "~     "~ —"i 

the grain boundary of Fig.  23 with n = i      and a = <*_    *_ 1, 

(a3li3il X~V    =° (III.34) 

i.e., T^ ss 0, no stresses. For the intersecting screw dislocations it is 

2- = «22 ^2 -^2 + *33 ^3 ±3    thuS f °r a22 = «33 = ao 

[ao(i2-i2 
+i3i3> x-iilS = ••«"-Ma +^3-i2 

)S - °    (III-35) 

again fj = 0. 

However, for the dislocation wall of Fig. 24, we find 

a = a32 _i3 _i_ and calculate from this 

(*32 -is ^2 X -il} = " «32 *3 *3 
(III.36) 

i.e., T)  = - QL .  Therefore in this case we have macroscopic elastic 

deformations and stresses. 

■ --. .v... ..„,,WVWMI BftHW^tWMMtV^'.e^Ji 
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We can ncVe the doublet IL. understandable by taking the cir- 

cuit § K  dx dF (§7), which gives the incompatibilities. For this 
K ij  J 

we imagine that the wall of Fig. 24 is produced by taking the limit of 

a group of grain boundaries of infinitesimal width (Fig. 25). The 

circuit X apparently is zero but not the circuits X' and £• ; these 

contribute an opposite and equal rotation angle D. This indicates 

that the dislocation wall of Fig. 24 is nothing more than a doublet of 

surface incompatibilities. 

We can change the sign of one group of intersecting screw dis- 

locations in the grain boundary and then obtain a surface incompat- 

ibility ^23 with eq. (III.35). 

However, a single group of parallel screw dislocations con- 

tributes only as one part to 7] , since the other causes a difference of 

orientation.  So all dislocation walls of constant density have been 

discussed. 

We summarize the results of the dislocation walls of constant 

density: There are mainly four different arrangements: 

1. Edge dislocations [— |— j— |— |—■ 

Grain boundary of the 1st kind (tilt) 

2. Intersecting screw dislocations. Burgers vector 

and line direction in both groups parallel or 

antiparallel 

Grain boundary of the 2nd ki     ist) 

3. Edge dislocations^ _L  J_  J   L _L 

4. Intersecting screw dislocations. Burgers vector     ) 

and line direction in one group parallel and in 

other antiparallel t 

No far- 
reaching 
self 
stresses 

Sources 
of far- 
reaching 
self 
stresses, 
no differ- 
ence of 
orientation. 
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I 

For non-constant density of the dislocations in a wall there 

is always a surface incompatibility T) which is always connected with 

stresses. 

Furthermore, the papers of Read and Shockley [174] and van der 

Merwe [100] should be mentioned, in which the energy of a small angle 

grain boundary is calculated according to the theory of elasticity 

(as sum of the self energy and interaction energy of the dislocations 

developed in the grain boundary) as a function of the difference in 

the orientation.  Concerning interesting applications of the theory of 

two-dimensional arrangements of dislocations see Bilby [2], Bilby and 

Christian [6], Bullough and Bilby [14]. The latter two papers contain 

applications to the important phase change of the martensitic type. 

Furthermore, Bullough [162] explained by use of the theory 

mentioned the observed twin structure in lattices of the diamond type. 

f Finally we will consider the problem of the curvature of the 
I 

structure in polycrystals, mentioned previously in §20. Let the body 

of Fig. 14 be an ideal polycrystal which suffers dislocation motions 
I 

transforming it into the shape of Fig. 14b, if the boundary between 

the two parts is not initially connected.  In reality it remains con- 

tinuous and obtains the state of Fig. 1. The question arises whether 

the crystal of Fig. 1 is still an ideal polycrystal.  If not wo have 

2 
to show it by x-rays. 

2 
See for this also Seeger [139]. 
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We saw that we can consider grain boundaries to be walls of 

dislocations. This holds    only for snail differences in the orien- 

tation, since only these have the special property that we can dis- 

tinguish   single dislocations.  However, we can imagine that more and 

more dislocations approach and join the grain boundary, thus we get 

any arbitrarily large difference in the orientation.  If we use the 

theorem that a grain boundary is always a two-dimensional dislocation 

arrangement, then the statement "ideal polycrystal" in its stress- 

free state implies a certain requirement for the dislocations of the 

In crystal physics this theorem is generally not used, as the 

"rough grain boundary" often can be described more simply. However, 

sometimes its description as a two-dimensional dislocation array is 

more convenient (p. 40, Builough [162]), 

body.  It can only be the following requirement: The Burgers circuit 

around an arbitrary surface element AF, which intersects very many 

2 
crystallites has to be zero.  By this prescription we can define an 

2 
We imagine the volume element AV to be an ideal crystal in its 

initial state, which becomes the state of a polycrystal by dislocation 

motions. Then the Burgers circuit should be carried out in the ideal 

crystal. 

ideal polycrystal.  Hence, it follows that the body of Fig. 1 is no 

longer an ideal polycrystal, and it must be possible to show this 

3 
with x-rays. 



169 

(Footnote #3 for peg« 168) 

This conclusion also holds for amorphous bodies, which there- 

fore can be included in the continuum theory of dislocations. 

For large curvature the distance between the dislocation walls 

in Fig. 1 is smaller than the average linear dimension of a crystallite. 

Then there are a number of such dislocation walls in most of the crys- 

tallites, which results in an average curvature of the lattice planes. 

This can be seen as asterism in x-ray pictures. Thus it is sufficiently 

explained why we also can show macroscopic curvatures in the structure 

of polycrystals. 

§24 The Tjpes of Dislocations of the 
Face Centered Cubic Crystal 

Previously we always considered the simple cubic crystal since 

by this we get a simplified view of the real circumstances, which is 

sufficient in many cases.  Indeed, there is no metal which crystallizes 

in the simple cubic lattice. However, it is typical for metals to 

aspire to a high spatial density, thus it never happens that neighbor- 

ing lattice planes are in opposition as in the simple cubic lattice, 

but they are arranged to fill the space between the atoms as the example 

of the face centered cubic lattice show in Fig. 26.  So it occurs that 

most of the metals only crystallize in three different kinds of lattice, 

the hexagonal close packed, the face centered cubic and the body centered 

cubic lattice of which the second is most common.  In all these crystals 
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we do not have such simple relation« as In the staple cubic lattice; we 

will shortly take account of this at least In the case of the face cen- 

tered cubic lattice,, for some important problems follow from this. 

The important cubic free centered »etels are gold, silver, 

copper, aluminum, brass, nickel, and certain iron alloys.  However 

iron is body centered cubic at room temperature. 

To describe the crystal lattice, we introduce three cartesian 

unit vectors _a , which as in the example of Fig. 26 are directed from 

the left, lower, front corner atoms to the right low«r (a ) and the 

left, upper, front atom (a ) and it should be a = a x a .  To indi- 

cate a group of parallel lattice planes, we write in parentheses the 

components of its normal vector simplified by multiplying by a common 

factor, so that they have the smallest whole numbers that are pos- 

sible.  So (100) are the planes J_ to *i>   <010) _L -*2' (001) JL-?3' 

These groups of lattice planes are equivalent crystallographically, if 

we wish to indicate them all together, then we use [100} for all plane 

crystallographically equivalent to the plane (100). 

2 
This simplified representation holds only for cubic crystals, 

where it is not necessary to distinguish covariance and contravariance. 

For the rather complicated relations in the general case see, e.g., 

Jagodizittski T68]. 

To indicate a direction, we write in brackets the least integer 

components of one vector in the same cirection. Therefore, [100] is the 
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direction of a  , etc.  All directions such as fUlOJ, [001], further- 

more, [100|, fiHOI, (001), where 1 = -1 ore indicated by (100). 

The most important planes of  the face centered cubic lattice 

are the planes  111'» since these are the only possible glide and climb 

planes under normal conditions.  The 111* plane is the dense.'t plane, 

one of which is shown in Fig. 27.  A second plane no»' can be 1 oca ltd 

in B or C.     A stacking sequence ABABAB ... ("two layer sequence") results 

the hexagonal close packed packing, a sequence ABC ABC ABC ... ("three 

layer sequence") is the face centered cubit- lattice. 

For the internal energy of a crystal the forces between neigh- 

boring atoms are most important.  If now the stacking sequence contains 

an error, in such a way, that we have ABC AB ABC ... so thai each atom 

is surrounded in the same way by 12 nearest neighbor atoms as before, 

but the arrangement with the farther neighbors is no longer the same. 

The increase of energy caused by this is very small because of the short 

range of atomic forces, therefore such stacking faults occur relatively 

often. 

As noticed in 122 the Burgers vector of a dislocation should be 

the smallest possible lattice vector, therefore as we can easily verify, 

it is directed always along a \110> direction in the face centered cubic 

lattice.  Simultaneously it is always the glide direction.  Now the (110) 

plane is perpendicular to the [110] direction.  However, an edge dislo- 

cation with the Burgers vector in the [110] direction is not the edge of 

one inserted in the (110) plane but two, as the "thickness" of one (110) 

plane is the half of the interatomic distance as can be seen, e.g., from 

Fig. 26.  This is represented schematically in Fig. 28a. 
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Now we have in practice the important procedure of the splitting 

of such a "complete" dislocation into two so-culled "Shockley partial 

dislocations," Fig. 28.  The nomenclature should indicate, that th? 

The stacking fault and the split dislocation were described 

first by !!■ ;dtareith and Shockley IW].  For comprehensive discussions 

ol this, see beside others, Frank [45], Frank and Nicholas [50], Read 

i12l|. Thompson [152], Seeger [134], [136], '140]. 

Burgers vectors of both half dislocations are no longer whole lattice 

vectors.  Usually the procedure of splitting is written as a "reaction 

equation" 

iruo] u  g-r211 ] + g|121], (III.37) 

where [110] 2 stands for the Burgers vector of the total dislocation, 

the other expressions on the right hand side of eq. (III.37) stand for 

the Burger vectors of the partial dislocations. Eq. (III.37) is simply 

an addition equation for these vectors. As we easily see, a stacking 

fault remains in the plane between the partial dislocations, which now 

increases the internal energy by the "stacking fault energy," thus, we 

obtain an equilibrium distance 2T] between the partial dislocations. 

The Burgers vector T211]/6 shows (Fig. 27), e.g., an atom 

is moved from the B position to the C position, if a partial dislocation 

moved between it and neighboring lattice plane A.  If both partial dislo- 

cations moved through, then it is again the B position. Then we can no 

longer determine if the dislocation which caused the relative displace- 

ment was split or not.  In many cases, especially for macroscopic prob- 

lems, we can neglect the splitting of the dislocation. 
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In general the theorem holds that each stacking fault 

terminating in the interior of a crystal is bounded by a partial dis- 

location.  It is not necessary that complete dislocations and partial 

dislocations be straight; they can also produce closed loops in the 

till] plane. Therefore, portions cm be in the screw orientation, 

whereby    in such cases the width 2(. is a little bit smaller. 

We will state without proof the following results for disloca- 

tions in face centered cubic metals in a simplified representation: 

1. Complete dislocations.  They are almost exclusively in the 

*llll plane and there thay are always split into Shockley partial dis- 

locations.  Where they go e.g., from a 'ill} plane to a neighboring 

plane the splitting must become zero again.  Such a location is called 

a "jog." The complete dislocation can only glide in its stacking fault 

plane and cannot climb at all.  A pure screw dislocation always lies 

along the (110) direction, since its line is parallel to the Burgers 

vector.  This direction is the line of intersection of two fill] planes. 

The screw dislocation can split in both planes. Under appropriate 

forces it can go from one glide plane to another, therefore it has more 

possibilities for motion than an edge dislocation, which is always 

bound to its glide plane. 

2. Frank's partial dislocation [45] is the edge line of an 

inserted (or an extracted) [ill] lattice plane; its Burgers vector is 

(lll)/3.  It also bounds a stacking fault.  This dislocation, in con- 

trast to Shockley partial dislocations which normally occur in pairs is 

stable alone.  It can climb in its {ill} plane, but it has no other 

possibility for motion.  It is almost complementary to those of point 1 

above. 
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3.  The compound Lomer-Cottrell dislocation f94], [24].  If 

along an intersection line of two '.111} planes, two split dislocations 

meet euch other, then both of the partial dislocations next to each 

other can "react," thus we obtain a compound dislocation of great 

stability.  Then we have a stacking fault which turns from one [111] 

plane into another.  Such a Lomer-Cottrell dislocation can neither 

glide nor climb and is therefore completely immovable.  Therefore, it 

is a very efficient barrier against motion of further dislocations in 

the related glide planes and plays an important role in the theory of 

hardening. 

See for this, papers of Mott f104), Leibfried and Haasen [92], 

Cottrell and Stokes :26], Friedel [56], Seeger, Diehl, Mader and 

Rebstock '113]. 

Other dislocations which may be possible in cubic face centered 

crystals are of less importance relative to those described in 1 to 3. 

§25 The Nonlinear Treatment of SinguLar Dislocations 
According to Peierls 

A look at the dislocation of Figs. 3 and 5 shows that in the 

center of the dislocation the elastic deformation is certainly far too 

2 
large to be calculated according io  a linear theory.   Indeed these 

2 
The same holds also in the case of the split dislocations. 
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deformations have not been calculated exactly up to now.  Iiitially there 

was no theory of the extension 2£ of the dislocation center, which is 

the governing value in the equation of the energy of the dislocation 

($18).  Peierls succeeded in an approximate calculation of the exten- 

sion of the dislocation center by a very interesting combination of 

microscopic and macroscopic methods. 

The basic idea of Peierls [116] is to accommodate himself to 

the nonlinearity of the circumstances at least in glide plane. We 

imagine that the crystal is divided into two parts by a cut in the 

glide plane. Each part will then be treated as a half space A-.x > a/2 

and B:x <■ - a/2 (Fig. 29);  additionally, a nonlinear theorem of 

elasticity is used, which adjusts both half spaces. 

Especially Nabarro [106] developed the very short paper of 

Peierls further.  Therefore some authors refer to the Peieris-Nabarro 

model. 

The half spaces are bounded by the lattice planes A r>nd B. 

During this the special atomic arrangements in the glide plane are 

taken into account.  The simplest circumstances are obtained for the 

simple cubic lattice with 1100} glide planes, which was investigated 

by Peierls.  However, Leibfried and Dietze [91] succeeded also with 

2 
the face centered cubic crystal. 

Nabarro T106] investigated the interaction of two dislocations 

in the simple cubic crystal and van der Merwe [100] treated plane 

arrangements of many dislocations.  Seeger and Schock [141] were 
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(Footnote Continued) 

able to determine, among other things, the energy recovered when a 

dislocation dissociates into partial dislocations, according to Peierls. 

A comprehensive summary of all results can be found in Seeger 1134], 

The nomenclature is explained in Fig. 29.  Initially we have 

the (simple cubic) ideal crystal.  The tangential displacements of two 

atoms lying opposite in the lattice planes A and B are called u and 

u . respectively, and their relative displacement is 

AR        A R 
u  (xx) = u (xx) - u <x > (III.38) 

where x indicates the initial position.  Let the crystal be infinite 

in all directions; therefore, r?/dx_ = 0.  The calculation according to 

the theory of elasticity shows, if it is right at all, that for the 

edge dislocation in the glide plane, x = 0, at least up to the very 

near neighborhood of the dislocation center, only the stress a      is 

different from zero (eq. (11.114)).  Also, in the dislocation center 

all the other stresses may be smaller than a  .  Therefore, they rro 

assumed to be zero in the whole glide plane.  We call this the Peierls 

assumption, in which we also will include the theorem of elasticity 

used by Peierls to adjust the planes A and B.  We obtain it by the 

following consideration: 

If we displace the upper half space with respect to the lower 

tangentially by the interatomic distance a, then the whole crystal is 

in equilibrium again, i.e., there are no repulsive forces.  Hence, it 

AB 
follows that the reaction to a relative displacement u , i.e., the 
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AB 
stress 0 , is a periodic function of u  with period a. The simplest 

assumption is that used by Peierls 

2TT u^Cx,) 
g     -  -— sin ————— 
21  2n       a 

(III.39) 

where the constants are chosen in such a way that we get Hooke's law for 

small displacements. 
plane 

For cutting along a glide in a state with dislocations, we have 

to apply the two-dimensional force density a      at A and of - a     on B, 

in order that no displacements of the atoms in A and B occur. The state 

of strain in the interior of the half space due to these "surface forces" 

on the half space A is known in the theory of elasticity from Boussinesq 

and others. For the plane A it holds (see Leibfried and Lücke [93], 

eq.   (12)) 

duA(x„) 

dx. 
V>    CT21(X1}   -   , 

TnnG   J_ /       1 
1 m-1    p 

Trmfi    J 
(III.40) 

-    x1-xi 

A similar equation with changed signs on one side holds for B,   i.e.,' 

A    AB/ ^ 
dU     (xl>       2(m-l) 

dx, Ting I 
P21(V   ,  , 
 7*1 (III.41) 

- Xi  - Xi 

1 AB 
Therefore,   d(u    + u )/dx    = 0,  we take the free integration 

A B 
constants to be zero,   i.e., u    = - u . 

On the right hand side we substitute eq.   (III.39) 
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. Aö ,     ■» /lta    AB.  . 
du m-1  ,»    sin <2n u    /a)   . 
7nr- = -2-J    -dx 

2   • 
TT   m   -<» X      -   X 

1 
(III.42) 

and we obtain according to the integral  theorem of Hilbert     the 

This is 

f(r) -ifüÄ 
n «•'      F-x 

-00      - 

00 

dxlijU)  = IJ    l££i d§ T1281 

so-called Peierls' integral equation 

a. AB. /. . . / _  AB.  . 
(• du (x.) dx, ,    2nu (x.) 

l   l , / m-l           l 
«•■   dx = -   sin  
-co        /    1 m         a 

Xl " Xl 

(III.43) 

A     B 
with which we can determine the displacements u and u of the plane 

A and B. 

As Eshelby T37] showed, we can obtain a similar integral equa- 

tion with an equivalent assumption for a screw dislocation in the 

x -direction and with x = 0 as its glide plane 

,  AB,   /. ,.   / _       AB.     . 00 dw    (x,)/dx, 2TT w    (x,) 
  dx    = - sin  J / 1 a 

-        Xj   - xL 

(III.44) 

AB 
where w  is the relative displacement of the atoms as above, only in 

the x -direction instead of in the x -direction. 
o 1 

Equation (III.43) has the exact solution 

A     a     ,1    „/   a m   3 
u = - —- arc tan —,   C s — —- % — a 

2TT /'   *   2 m-l  4 
(III.45) 



179 

according to Peierls, as we can check easily (see footnote 1), corre- 

sponding to a static edge dislocation with Burgers vector of magni- 

A     B 
tude b = a in the x -direction (see below).  With u and u given 

according to eq. (III.39), immediately o      is known for the atomic 
mX 

plane, i.e., the surface forces on the half spaces.  The following 

classic problem, to find the corresponding Airy's stress functions in 

the whole half spaces has the solution 

GC' ,    ax .   r 2   . ,_  „/.2 
X = - ~t  (X2 " t   inlXl +   (X2 " a/2 + C } ] (III.46) 

according to Leibfried and Lucke [93] for the half space A. 

This equation contains in contrast to the previous solution (11.113) the 

additional term - a/2 and - a/2 + Q    A.- a/4 and therefore shows that at 

a distance of a few atoms from the dislocation center Peierls1 solution 

practically does not differ from that of (11.113). 

As Eshelby f37] emphasized and as it follows from our eq. (1.77) 

we can consider 

AB 
a   £ du 

dx   TT „2 
Xj + £ 

(III.47) 

to be the two-dimensional dislocation distribution in the glide plane, 

where 

ÄJ dxx C'/<xJ + C'
2) . a (III.48) 

S) 

i.e., apparently the total Burgers vector of the surface dislocation is 

equal in magnitude to a.  The calculation of Peierls obtains, therefore, 

the following results:  The edge dislocation in the simple cubic crystal 

has a two-dimensional extension.  We can consider it as previously to be 
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AB 
composed out of filaments of magnitude du .  The distribution function 

1  / 2 
of the filaments is a Gaussian distribution (III.47).  2£ is its half-width. 

That we get the extension of the dislocation in two but not 

three dimensions is caused by the initial assumptions of the calcula- 

tion.  Whether the dislocation has a three-dimensional extension in 

reality can not be said with certainty.  However, even the two-dimen- 

sional extension .eads to a finite self energy. 

2 
In the literature "  is called the dislocation width in most 

cases. 

According to Eshelby f37] the solution of eq. (III.44) which 

describes the static screw dislocation in the simple cubic lattice, 

is exactly the same as that according to the theory of elasticity. 

Apparently in this case Peierls1 method is less efficient than with the 

edge dislocation, so we get no finite self energy of the dislocation 

line. 

Now we will report briefly the most important result of 

Leibfried and Dietze T91] for dislocations in the most densely packed 

plane of the cubic face centered and hexagonal crystals. Here the 

simple assumption (III.39) is no longer sufficient.  We need a theorem 

of elasticity which contains a      and a      as a periodic function of 
2, 1 iJ 

AB     AB 
u  and w .  With this we get two simultaneous integral equations of the 

Peierls type, which we will not write down.  These equations do not have 

elementary solutions. According to Leibfried and Dietze, we obtain 

simple and useful approximate solutions if we let the total elastic 

energy per unit length 



181 

A    B    AB 
T = T + T + T (III.49) 

A      R AB 
be a minimum, where T and T are related to both half spaces and T 

is the interaction energy per unit length in the strained state. 

Leibfried and Dietze succeeded in proving that those displacements 

A     A 
u and w , which cause the energy to be a minimum, satisfy the Peierls' 

integral equation, thus the variational method mentioned represents a 

proper approximation method.  Leibfried and Dietze gave solutions for 

some special dislocation types, particularly for the important partial 

lislocation. 

We now give the most general (approximate) solution for the 

partial dislocation in the most densely packed planes [83].  The glide 

plane is x = 0.  The Burgers vector also lies in this plane (§24). 

S is its angle with the line direction.  We find by assumption corre- 

sponding to (III.45) 

b   •  n 1 
- —-  sin p arc tan — 

2TT , 
A    b    Q    4   1 
w = - -— cos B arc tan — 

2TT , 

(III.50) 

where C    is a free parameter, the minimum energy per unit length is 

2 Gb  , m   . 2Q     2Q. ,.  R   .. 
T -- —r—  (—-  sin 0 + cos ß)Un  + 1) 

4TT  m-1 fi 
(III.51) 

with 

C = 2^2. b(J» sin2e + cos28) 
3V3-   m"1 

(III.52) 

I 

There 2R is the linear dimension of the medium going to infinity in 

the x -direction. The formula for the partial dislocation given by 

Leibfried and Dietze follows from this for a particular angle 0. 
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Eq. (111.51) can not be compared with the previously found 

»•q. (II. Ill-, since there is no relation between the I. of the latter 

ami R of in* former.  However, we can easily calculate a two-dimen- 

sional dislocation distribution in th*r »-lide plane corresponding to 

tii (II1.47).  If \e  identify 2u and 2w with the components g and 

of the displacement jump in eq. (1.77), then we easily tbtain the 

dislocation density ; 

du       dw 
•  ' »a 3^ li * ^ V 

.  -' 
i„(sin r l  . cos s i.) -;  (111.53) 

X   -t  L 
1 

Here i indicates the I in«- direction, the term in parentheses the 

direction of the Burgers vector of the half dislocation. Then we 

consider the density (III.53) to be an arrangement of dislocation 

filaments with infinitesimal magnitude 

Üb ~ b-, <x ) dx, (111.51) 

xi * ■ 

thus, we obtain from eq. (11.112) 

G        » 2. 2.     bV2   ," dxi *       dX! 
T       _  <_- sin  -   ♦   cos  3)   -^      __    t - (1,1.55) 

T* —03    x       -f     ( — o0    X + 

Now »: approximate  these  integrals by  taking  instead of  (111.54) 

for db 

db =     dx       for    - -*- •   x    v  JL ;  otherwise = 0 (III. 56) 
„ /        1 2 12 
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ap 

which satisfies the condition   db  b as does (III.54). «.   — 
-CD 

(III,54) aeans a constant distribution of dislocation filaments in the 

given region, (b ")' is the magnitude of the maximum of the Gaussian 

distribution b», (x ).  The resulting integral we calculated in 118 if 

we substitute ' by "' 2.  Then we get for the energy per unit length 

1 
r  -TT (-2T sin23 + cos20)(j£n 2L s 0 - 1)        III.57) 1    IB— 1 / .1 / 

This formula foliovs from eq, (11.145) for which we noticed that it 

holds even for curved dislocation lines, as long as we take the right 

.12   c core radius e. Vor  e we calculated the value € - f e   ±n  gig. 

With " = "'' 2 and eq. (II1.52), we obtain 

*"      m    2      2 
c b *-? (—r sin 9 + cos 3) (in.58) 

7~~    o &    m—i 
N 54 e 

where the factor in front of the parentheses is exactly 0.3.  Thus 

it is possible for us to calculate the energy of curved partial dis- 

'»cations in the most densely packed plane of the face centered cubic 

and hexagonal crystals in certainly not too bad an approximation. 

The calculation contains some approximations (i.e., Peicrls' 

assumption) on the other hand the energy is not very sensitive to small 

changes of e, since the energy depends logarithmically on c.  We can 

improve the calculation by determining the integral (III.55) exactly, 

even further if we also consider the elastic anisotropy in the half 

spaces A and B.  In the case of straight dislocations, such calcula- 

tions were carried out by Seeger and Schock f141]. 
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We restricted ourselves in these calculations to Shocltley 

partial dislocation.  These play the principal roles in face centered 

cubic and hexagonal crystals at room temperature.  In other crystals, 

o.n., the body centered cubic, we have other types of dislocations and 

we have to carry out for each type a single Pelreis  alculation. 

Summarizing, we can say the following about Peierls' method: 

The dislocation width '  gives a measure of the extension of the 

dislocation center about »hose magnitude it happens that the calcula- 

tion according to the t heory of elasticity gives negligible results at 

distances ot a few interatomic spacings.  Peierls' calculation gives 

an idea of in which cases the treatment of dislocations according to 

the theory of elasticity will lead to meaning tu 1 results, and it gives 

even then an indication of when that treatment cannot be applied because 

of large complications.  For the investigation of the dislocation 

center itself (e.g., calculation of its energy) the Peierls' calculation 

gives a first approximation. 



CHAPTER IV 

SON-RIEMANNIAX GEOMETRY OF DISLOCATIONS1 

Kondo, also Bilby, Bui lough and Smith, realized independently 

the close relation between the geometrical problems of plasticity and 

those of the non-Euclidean geometry.  Accordingly, we can use the highly 

developed methods of differential geometry to treat such problems, 

especially the concept of torsion.  This is due to Cartan, whose papers 

are a very nice application to real bodies.  The relation between the 

dislocation tensor a ' and the torsion tensor L [y,v] is given by the 

equation 

e""V L[uv] (IV'U 

The difference between the theories of Kondo and Bilby, Bullough and 

Smith is similar to that between our Chapters I and lit:  The theory of 

Kondo is a continuum theory, whereas Bilby, Bullough and Smith developed 

their theory in the crystal.  We will discuss in more detail differences 

between those theories in section 28. 

I am very grateful to Prof. K. Kondo and Dr. B. A. Bilby for 
k 

the discussion about this point.  I thank Dr. J. D. Eshelby very much 

for giving me Kondo's book [76] from which I first learned about the | 

| efforts of Kondo.  (Dec. 1956.) 

I   
i 
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S'iti  The Theory of Kondo and Collaborators 

tirst *e review familiar concepts using the nomenclature of 

Kondo I7I|.  In the ordinary theory of elasticity we are not partic- 

ularly interested in rotations, as long as they do not cause elastic 

fortes.  The important quantity is then the elastic deformation.  By the 

natural state of a volume element we mean the stress-free state which 

occurs if it suffers restraint neither due to external forces nor due 

to neighboring elements.  If self-stresses are present, then the volume 

elements can acquire their natural state only after cutting, since the 

elements are bound to Euclidean space.  However, we can imagine having 

non-Fuel idean -»pace, in which the volume elements can relax without 

being cut, if the restraints causing them to remain in a Euclidean space 

were suddenly to vanish.  Such an imagined stress-free state in the non- 

Euclidean space can also be called a natural state.  We can consider 

the cut elements in their natural state as the (material) Euclidean 

space, which is tangent to the non-Euclidean space at the related points. 

Finally we have to define the final state to be the (Euclidean) state of 

the body with the stresses which we want to investigate. 

The results mentioned here are all summarized in the book [74]. 

Most of them were reported first at the 2nd Nat. Congress of Appl. 

Mech., Japan 1952, by Kondo [731. 

In sections 26 to 28 we distinguish between co- and contra- 

9 
variance.  If ds  is the square of the distance between two arbitrary 

F 
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2 
points of a volume element in Its final state, and ds the square of 

i the distance between some points in their natural state, then we have 

dSp - dS^ = (5   - B ti> dx
X dxJ (IV.2) 

1 where x are the space fixed orthogonal Cartesian coordinates of the 

f i        i 
5 points in the final state,  g . (x ) -.- g .. (x ) is the metric tensor 

of the natural state.  The metric of the final state is obviously cora- 

| pletely defined by the quantity 

e.. = (5.. - g..) 2 (IV.3) 

where we omit the subscript F and N, since we are not afraid of 

confusion.  From the theory of large deformations we know that in 

the case of small compatible deformations, the e. . of eq. (IV. 3) have 

the form 

..-(11+11^ (IV. 4) 
dx   äx 

I 
| therefore e.. is identical with the previously used deformation tensor. 

I The vanishing of the Riemann-Christoffel curvature tensor R., ,, 
I Jk£' 

which is derived from the Christoffel symbol related to g.. 
ij 

J    1  ii /Sgk/  deli       dgik\ J~\*   (-r+-r--^) <"'-5> 
jk dx    ox    dx 

{ 

is apparently equivalent to satisfying the conditions of compatibility 

for the deformation.  IV. 

";=4{'f-A{'Ml}0-{)iV' 3ki    dxk Lji     dx* V    W V    W jk 
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the classic theory of elasticity is distinguished from the theory of 

self-stresses.  This statement also holds for large deformations, 

«■hm »hereas the form of the compatibility conditions,      0, only holds 

for sm.ill ilufnrmi't ions.  The total covariant curvature tensor 

.h 
Hi)kl      Kih Bjkl (IV.7) 

is antisymmetric in both Us first and last indices and symmetric 

in the pairs ij and ki, tor  small deformation the following: holds 

Isce McConnell 117 11) 

i.jkX  ''hi.j "kirn 
hm „hm  . hij kim _ 

ijk£ (IV. 8) 

as we can easily verify if we introduce e.. of eq. (IV.4) into 
ij 

eq.   (IV.7).     Then we get 

^hm        hij    kjlra ji 

dx    dx 
(IV.9) 

and with (IV.6) it follows that V, m ----  0. 

In a theory of elasticity which also considers self-stresses 

R  . * 0, the description of the deformations is then a problem of 
Jk* 

Riemannian geometry.  Since problems solved by such a theory are mostly 

geometric in nature, we can state as Kondo and his collaborators did: 

"The theory of elasticity is a Riemannian geometry and vice versa.'" 

However, in previous considerations we succeeded in treating 

sufficiently the geometric problem—at least for small distortions— 

without Riemannian geometry, so we will not consider the above-mentioned 

theorem as a rule for theorists in elasticity but as a helpful hint for 

readers who are especially familiar with geometry.  There is no doubt 
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that the study of Riernannt an and, as we will see later on, the non- 

Rlestannian geometry, will give us further understanding of the geometry 

of the deformation of the solid body. 

Kondo associates with each (Euclidean) volume element in its 

natural state its own local Cartesian coordinate system with unit 

vectors^. (X = 1,2,3), which have no restrictions.  Then it follows 

dx = e dx> 
—  ^x 

(IV.10) 

dx. = A. dx ,    dx = A dx 
l n 

(IV.ll) 

h-K+y i = A" e (IV.12) 

H  . ^ 
de = e r  dx 

X    K  A.(JL 

AJ AJ-6J, 
Hi   l 

AJ AX = 6X , 
H  J     H 

(IV.13) 

(IV.14) 

where dx = dx _i. is the difference of the position of two material 

points in the final state, and duu are the components of the correspond- 

ing vectors related to the same material points) in its natural state, 

e , A , A., T  are functions of x .  For the natural system we use 
—K   |j,   1   X\i 

Greek, for the (Cartesian) final system we use Latin indices.  For 

abbreviation we use 

d = o/dxi \ s K  d/öxi- (IV.15) 

Then apparently the first condition of integrability must be satisfied 

(d.d. - d.d.)x = 0 
j i   i j ~ 

(IV.16) 
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(IV.17) 

Since  r x . c A.,   ox = e A., 
i      i     J   * * J 

v ).x - A'.'o.e, ♦ e o.A. - e (F. A.A** + d.A.) 
J i    i .1 \   <>  J i  -n i|ii J   j i 

■?. -.x e (["* AXA^ + o.A*:) 
i .) -* -\u J 1   i J 

and 

: ;'" (A A" - A.A'") t o.A* - d.A*' - 0 (IV. 18) 
V  I J   J i    j i    i J 

from which 

f*   = i AV(*X' - ö.A?) (IV.19) 

follows by multiplication with A A  and eq. (IV.14).  We always indi- 

cate with brackets thai uc take the antisymmetric part of the enclosed 

indices.  The antisymmetric part of an affine connection is called 

torsion according to Cartan [15|.  Where it does not vanish in the 

n 
region, we have a non-Riemannian geometry.  Apparently F    is 

[AM,] 

a third order tensor, whose Cartesian components are 

r:. . = AVA^T*   ., (iv.20) 
i km]   <• k m [>.jj,] 

and with the relation (IV.14) it follows ([174] pg. 461) 

r'L . - i A1(" A
U ~  ä,A*> • (IV. 21) 1km)   2 /. m k   k m 

The eqs. (IV.10) and (IV. 11), which define the coordinate system 

e. are generally Pfaffian differential forms, i.e., 
A 

(d.d. - 3.3. )e * 0. (IV.22) 
1 J     J 1 ~"A 

After a simple calculation, the left-hand side of this equation gives 

the Riemann-Christoffel curvature tensor related to the natural state, 
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corresponding to T , which we will not write down explicitly, as 

R*  * 0 (IV. 23) 

«I 

Now we can displace parallel (w.r. to the connection I\ ) 

a vector c around an infinitesimal .surface element AF^" = e ^ AF 
P 

according to the rules of the differential geometry, so we take the 

See, e.g., Schouten [130], 

integral 

- §  F* CX cto^ (IV. 24) 

and we obtain in this manner (see Kondo) for the change of c 

J iC" - <i "u,v, <=x ♦ Ci>4F"v • (IV-25) 

i c I Kondo compared the above circuit with the Frank-Burgers circuit (§21). 

t The torsion T " , is the reason for a translation 
1 [p-v] 

f AbK -- T*    . AF^ = QPH AF (IV. 26) 

i H I where T  , is expressed by the corresponding 2nd order tensor. 
I rii.v] 
f H 
| By comparing with eq. (1.14), we see that T      , is connected with our 

\ previous dislocation tensor a  according to 

r^v]  2 |j.Vp [p,v] 

if Ab is really the Burgers vector.  This problem will be discussed 

in section 28. 
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It is difficult to discuss the second part of eq. (IV.25). 

For this see Kondo [74], pg. 466 et seq. First we will mention the 

following additional fact:  The tensor R,   corresponding to R,,  = 
XM,V lXp,v 

g. R   (g =  e • e ) is antisymmetric only with respect to its last 

H X 
two indices since I\  no longer has the from {  } .  But we can split 

a part of the above-mentioned symmetry of R.   and obtain 

Aci4R[ix][^]cX^V- <IV'28> 

With Rrnir ..-i substituted according to eq. (IV. 8) we get 

AC, = e,, "^   cX  AF (IV. 29) 
l    l A.TT p 

or written as vectors 

AC = C X \ •   AF (IV.30) 

Accordingly, AC J_ C, i.e., the vector suffers (in the case of small 

distortions) a pure rotation 

AD = - \•   AF (IV.31) 

This result shows (see eq. (1.64)) that we obtain by the use of non- 

Riemannian geometry not only our previous results concerning the dis- 

locations (see below) but also the results related to the incompat- 

ibilities. 

The difference in the sign is purely conventional. 

Beside Cartan's torsion and Riemann's curvature, there is 

another quantity of importance in this context, which we will discuss 
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now. We can see the important properties very easily on a two- 

dimensional material, e.g., a bent membrane. Generally we can restrain 

it by two rigid plane walls and so force it into a two-dimensional 

Euclidean space, in which it exhibits "self stresses." But if the 

membrane makes a thin circle hollow cylinder, then this is no longer 

possible without making a cut first. For this membrane, although it is 

bent, the Riemannian curvature is zero.  Its curvature, whicn is evi- 

dent in the three-dimensional Euclidean space in which it is inserted, 

2 % i  i 
is described by o x/ox dx , if for a moment x is the position in the 

three-dimensional space and x are the coordinates on the surface. 

Now we can imagine that our three-dimensional body in its 

natural state is represented by a "three-dimensional membrane" of 

six-dimensional Euclidean space.  X (A - 1,...,6) are its Cartesian 

coordinates. Then the "Euler-Schouton's curvature tensor" is defined by 

H* (IV.32) 

where x has the previous meaning. 

For this nomenclature see [130.1, p. 256. 

The relation between R. ... and Hv is given by 

I  0A HA, -HA, HA,) 
ijkA       ik jA   xl   jk 

IV.33) 

([74], p. 468) from which we find that when H/. = 0, R.  . always 

vanishes, but the reverse does not hold. Also the last case can be 

included in the complete theory. 
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\ov l.iiiv.Ui i'l as.-11 it'.', lattice defects v.1  ich occur in tin- cry .«"till 

as lollov.s: 

1. !..ii! ice defects ,ith incompatible metric, indicated by ;< 

non-vanishing iuemannian curvature tensor in t lie natural state 

\ " curva t lire defect s" ). 

2. 'Xon-Kiemannian  lattice defects, indicated by a non-vanishing 

torsion iensor in the natural state I torsion defects"). 

.'!.  Lattice detects connected with ;• non-vanishing Fuler- 

Schouten tensor. 

According In Kondo, it is possible that of the three quantities 

,, R „ ,. II  , only  .... is different from /.era  but also it may be 
' lk|   lik£   li       Tiki ' 

that only H'.'.   is /er.., and it may be that fr ., , -   0, but R , . * 0. 
n fj k| ijk£ 

Kondo concludes from the fact that ic , which is the same as the curva- 

ture tensor according to eq. (IV.25), is proportional to the vector c", 

that the curvature tensor describes defects which are spread over a 

larger volume, whereas the torsion tensor corresponds to dislocation in 

stual1 (almost microscopic) region.  As defects which can be described 

by the use of the curvature tensor, we should especially mention pileups 

of dislocations in a slip plane, interstitial atoms distributed in a 

volume, and lattice distortions caused by changes of temperature. 

According to eq. (IV,32), all curvature defects can be described with 

the Euler-Schouten tensor. 

If we compare these statements with our previous discussions, 

then we notice that two points need further explanation. 
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(a) The Kiemannian curvature should also be finite if no torsion 

is present.   We ct,' shovi that this is not compatible with the condition 

The tun following sentences are in anticipation of section 21. 

(IV. 16) ot BBS. which reads that La  has the form (IV.37).  Indeed, 
p-, 

Kondo allows a more generalized form of the connection.  The case con- 

sidered here extends the theory of BBri a:id our theory, in which all 

c^uld be reduced to dislocations.  It will be the duty of future research 

to clarifv which phenomena are governed by such a curvature tensor with 

vanishing torsion. 

(b) R. .. „ vanishes, then if no external forces are present, at 
ljkJt 

least in the case of smalt distortions, we have no elastic deformations 

and the crystal is free of self stresses.  Additionally, it should be 

that r    = 0.  Then, according to our previous considerations, the 
I J K J 

only possible distortion is that by which the body remains intact, the 

P 
plastic distortion grad s , through which dislocations deform the body, 

but at the end of the procedure they are no longer in the interior of 

the body.  It is obvious to connect the distortion with the tensor H.\ 
ij 

_i    » 
in the case R. .. - = 0, i , .,n = 0, especially (analogous to the above- 

ijk£      Tjk] 

mentioned example of the cylinder) two-dimensional cuts are necessary 

to transform the body which is in the Euler-Schouten state of curva- 

ture into the three-dimensional Euclidean state.  Each cut corresponds 

to a motion of a dislocation through the body. 

A two-dime.. ;ional membrane only can have two-dimensional stresses. 

Therefore it can bend without stresses to the mentioned cylinder. 
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O t.iml. the t mal explanation ui' these t .0 points will complete 

tin1 picture developed lit't'e,  Thus 11 is completely compatible with <au 

\iw\ iou.s result*.  i'ven now the cunt ormi ty is very impressive,  Finally, 

«■ mention that ecj. MY. 17) is nothing other than our geometric basic 

t'Hi.it ion now only written 111 (space fixed) Cartesian coordinates of the 

iiu.il state.  '.\e  ill prove this in the next section. 

S27  The Theory of Mil by, Bui lough and Snii Hi [3,4,5] 

The states considered in the theory of Uilby and collaborators 

;ire the ideal crystal as the reference state described by a Cartesian 

coordinate system with unit vectors i, which should be lattice vectors 

($21), and the final state, called the dislocated state by the authors. 

To describe this we choose at each point three independent unit vectors 

1 2 
e (!'), which are everywhere the same lattice vectors. ' 

During the real plastic deformation, small regions bounded by 

the glide and climb planes are only elastic-ally deformed.  In these 

regions neighboring atoms remain neighboring during this procedure. 

Since these "elementary regions" are very small with respect to the 

physical volume elements (§20) their elastic distortions can be con- 

sidered to be homogeneous.  Then we can imagine that e is the atomic 
a 

triad (perhaps in the center of mass of the elementary region).  Thus 

e describes directly the lattice in its dislocated state, 
a 

9 
"We use now Greek indices corresponding to the Cartesian 

reference system. 
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We can imagine tin' these are derived t roni the unit vector <>l the 

reference system by a distortion 

e   iP   i   ;  l .   E1' e ( IV. HI) 
a    a a 

where I)' is the related tensor of the affine transformation and !•' 

is its reciprocal tensor, thus 

K°  U0 .3 
a     a a 

iP vh       b    ,    K" »'■  ■ ' . ( IV.:J;>> 
a ü a 

BBS now define a new theorem of parallel transport ir> Fuel i clean space 

by stating that vectors which have the same components in the e  system 

should be parallel   The actual difference of two parallel vectors c 

at two neighboring points P and Q is expressed as a vector originating 

at the point P.  After simple calculation, the authors obtain 

dC" = F\  —-  Cv dx^  . (IV.36) 

Then they ccnsider a Euclic!ean space with the linear connection 

Bv     9 bxv   a dxv 

and the related theorem of parallel transport (IV.36).  The torsion 

tensor follows 

,<y 

a  ^ a 
,ÖEI  dE 

which corresponds to eq. (IV.21) of Kondo.  Now the Fra„ik-Burgers' 

circuit is carried out.  The typical element of the circuit in the 
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I 
I isl IK'.' ' t'll  I I \ St ill  1 > 

dx' i   itx' i:;i t- (IV. 39) 

In thf sense ol footnote (2 of page 132) we imagine that we 

do not go from atom to atom but from elementary region to elementary 

region.  This corresponds to the fact tli.it in the'case of a roaero- 

scopically continuous dislocation distribution the dislocations are 

arranged between the elementary regions.  For a comprehensive discussion 

of the generalization of the Burgers circuit of $21 to continuous dis- 

location distributions see the papers of BBS [3,4]. 

The corresponding step in the reference lattice has numerically the same 

component in the i system, according to §21, the step (IV.39) in the 

e system which is 
■ a 

dx E? i  for  a- = a . (IV. 40) 
?  a 

The circuit tround a surface F with boundary curve C gives the related 

Burgers vector (-. dislocation flux) according to §21 

B = - ßdx* Ea i  for a -  a . (IV.41) 
*. K - a 

n 
For ihe symbol ~   see below.  The application of Stokes' theorem and 

the use of infinitesimal surfaces leads to 

a a 
^F    f^p 

dB*? - I (_t _ -A) dF^   for   a=a. (IV.42) 2 V  dx^ 

■4^ 
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In eq. (IV. II) dx means the difference of two points in their final 

state, also E, is taken in the final state.  Therefor-, also the right- 

hand side of eq. (IV. 12) is related to the final state.  Therefore, 

eq. (IV. 12) (also the equation before) is no simple vector equation, 

the sign -means that the components on both sides of eq. (IV. 42) 

are numerically the same for a  = a.  Because of (IV.34) then the right- 

hand side of eq. (IV.42) is equal to the final state, vhich we obtain 

a 
if we map dB to the final state. 

dh01 =  if* dB3 (IV. 43) 
a 

or 

I i /öE_       3E .       Q 
dL*; \ jf (_i. _*) dF0Y. (IV>44) 

dL is called the "local Burgers vector" according to BBS whereas 

dB is the "true Burgers vector." Notice:  from the point of view of 

an invariant representation, there exists only one Burgers vector, 

a     oi 
dB and dL are only different characterizations of this vector.  For 

small distortions D in eq. (IV.44) can be replaced by 6  and it is 
a a 

not necessary to distinguish local and true Burgers vectors.  By com- 

parison with eq. (1.19), we find the relation between the torsion 

tensor and the dislocation density to be 

L*    . =Ic        .\      «XK= e^X    ,  . (IV.45) [\i\>]       2    p,vp [|j,v] 

BBS are talking of local dislocation density. 

Ths Reimann-Christoffel  curvature tensor 

5LB6     dL&y       a     \ X 

^6        dxY        dx Xy    36 X6    ßy " 



200 

,\ i ; I the connection (IV.37) vani.'he.s identically  According to BBS 

this is the condition that we can define the local basis c every- 
a 

where uniquely, and it means parallelism at infinity.  This corresponds 

in the fact that the reference and final state are in the Euclidean 

so.ice.  However, Hondo took the curvature tensor (TV.23) ii. the non- 

Riemannian (natural) state ar.d therefore it did not vanish.   We 

The two important eurv lture tensors are defined according to 

our previous point of view by A3 « '-  L _ .   AF'' , ij . ; R . . AF' , 
dfc   apyo yp        apyb 

where A has the same meaning as in eq. (IV.31). 

obtain t.  same result if we take the curvature tensor according to the 

e e ;•>. eric (called by BBS the "local metric").  Thus this is not 
- a ~- L 

the same curvature tensor as (IV.46).  The vanishing of the curvature 

tensor taken with the local metric means that the crystal is free of 

self stresses. 

It was shown that the theoiy rejorted above is very useful to 

investigate the pure rotation states of Nye (§7), which are similar 

to states of the classic theory of elasticity characterized by the 

vanisning of the incompatibilities (§7).  We cannot discuss in detail 

calculations of great interest as applications of non-Riemannian geo- 

metry to real bodies, but we have to restrict ourselves to the most 

important point, the relation between the torsion tensor and Nye's 

curvature tensor. 

The starting point is the theorem of parallel translation 

(IV.36) which we write in the form 
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dC   - L t  C
b dxC . (IV. 17) 

a     a be 

We split I. ,  into its symmetric part L, ,.  and the antisymmetric 
abc J v (nb)c ' 

part L.  . : 
[able 

dC = - (L.    -t Lr un )C
b dxC. (IV. 48) 

a      (ab)c   fabje 

It' we assume to be taken in sequence the lattice vector e, instead of 
- b 

C . then dC is the change as we go to a neighboring point.  As we see 
• a 

immediately, L, ...  means a pure deformation; LP , , , a pure rotation 
*   (ab)c [ab]c 

of the lattice (putting sequentially the vector e , er  instead of C ). 

In case Lr _,  is dC IC, the angle between e, , e„ remains unchanged. 
[ab]c    • l--i —1-2 

whereas for L.  .  generally the length and the angle will be changed. 

If we take 

d  d  1 abd . .. Lr UT = E UJ " > " - ö e   L . (IV.49) [ab]c   abd c  c  2     abc 

then the rotation part of dC becomes 

dCR0t = - « _ Kd Cb dxC (IV.50) 
a ,      abd c 

Rot 
or written using vectors as dC   = - £ x H • dx from which we 

obtain for the step from one point to another 

du! = H-dx . IV. 51) 

By definition then H is Nye's curvature tensor and (IV.49) is the 

relation between this and the torsion, H  is associated with the first 

two indices of the torsion and the dislocation tensor with the last two 

indices.  In the case of a pure state of rotation we can easily obtain 
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\\i' ; feint um ( I . 55>) by comparison with eq. (IV. 13) | f: 1 .   In thi: 

iv ;<_■ ;il st» i !ii' tensors ,' a iit I K of section 7 become identical. 

i'di- this write o<i. (IV. 19) with Greek indices. 

"For a discussion of the various curvature tensors, see also 

Kshelhy | II|. 

Furthermore, BliS show that the equation 

H X V -. 0 (IV. 52) 

mentioned first by Nye holds only for small rotations.  These equations 

are the conditions that da of eq. (IV.51) is an exact differential. 

However, this only can hold for small angles of rotation. 

§28 Discussion 

In the last two sections we reported applications of non- 

Riemannian geometry to continuous dislocation distributions.  The authors 

mentioned moreover discussed, some very comprehensively, the relation to 

known problems of differential geometry—it should be mentioned, for 

instance, Cartan's holonomic groups and structural equations, or Ricci's 

rotation coefficients; so they improved understanding of the non-Riemannian 

concept of dislocations.  In the book of Kondo [74] is described the very 

interesting possibility of treating the same problems by the use of a pure 

Riemannian geometry in six dimensions, where the holonomic coordinates 

x are no longer sufficient, but we have to use the anholonomic coordinates 

of Riemann space.  In the opinion of this author the related method is 



especially useful for treating problems in plasticity,  On this basis 

he develop«'! a new mathematical theory of plasticity.  Unfortunately the 

papers of Hondo and his collaborators came to the Knowledge of the 

author a short time before finishing this report.  Hence the last 

mentioned paper couid not be reviewed. 

In the opinion of the author the Riemannian and the non- 

Riemannian geometry will play an important rrle for large distortions. 

First thepe geometries, which were highly developed in another connec- 

tion, are formulated from the beginning for arbitrarily xarge distor- 

tions.  Second, the incompatibility tensor, 7]. ., governs the self 

stresses uniquely only for small distortions, while the Riemann curva- 

ture tensor is unique for large distortion also.  On the other hand, in 

these theories we usually have to calculate with tensors of 3rd and 

4th rank; however these car be replaced by tensors of lower rank at 

least in the case of small distortions.  [See eq. (IV.9) and IV.27)]. 

Therefore, it seems that the theory described in the first sections of 

this book is especially useful in the case of small distortions; more- 

over, it is more closely connected with the physical procedures of 

plastic deformation than the other theories. 

In the preface of this chapter we pointed out the difference 

of the points of view of Kondo and 8BS. Now we will discuss another 

difference between the two theories, which exists independently from 

the first. 

a 
For a given reference and final state of the body, the D and 

Q. 

E0  in eq. (IV. 34) are uniquely determined,  the A^ and A. in 
P A.     j 

eq. (IV.12), however, are not.  Here we have a free choice of the 
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coordinate system.  First we will determine the orientation of the 

elementary regions in their natural state, which was determined by 

Kondo, in such a way that they have the same direction everywhere, 

furthermore, we imagine that a virtual ideal point lattice most use- 

ful ly having the same shape as the real atomic lattice in its perfect 

st; tf, is impressed on the final state, thus, e.g., i, are the unit 

vectors of this lattice, similar to the i which are the unit vectors 

of the reference lattice of BBS.  If it would be possible to show this 

virtual lattice also in the natural state, then it would have suffered 

exactly the inverse strains and rotations as the real atomic lattice 

during the transition from the natural state to the final state.  The 

virtual lattice can be completely described in its natural state (in 

which it is deformed) by a system of unit vectors^ .  If we now choose 
"*" A. 

according to Kondo the basis system e , then our considerations lead to 
"" \ 

the conclusion that eq. (JV.12) has the same meaning for the virtual 

lattice as eq. (IV.34) foi the real lattice.  I.e., that A , which 

(Footnote for preceding page) 

With a convention according to footnote 2 pg. 132. 

transforms the virtual lattice from the natural to the final state, is of 

the same magnitude as D , which transforms the atomic lattice from its 

natural state or, in other words, from the reference state to the final 

state.  The last holds because of the convention about the orientation 

in the natural state. 

From this it follows that the components of Tr, n in eq. (IV.21) 
[KJItJ 

o 
and LrQ , in eq. (IV.38), which are both related to the Cartesian coor- 

IPvJ 

dinates of the final state, are not necessarily numerically equal. 
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Therefore, also dislocation densities o calculated according to 

eq.(IV.27) and (IV.45) are generally different.  We could call the 

dislocation density according to Kondo "virtual." It should not be 

difficult to convert the real and virtual dislocation density. 

Finally the difference in the results of the two theories is 

a matter of convention, which should have no more importance than the 

sign convention.  In the case of small distortions th«. difference 

between virtual, local and true dislocation density vanishes, then 

eq. (IV. 21.) and (IV. 38) become directly the form of (1.17) of the 

geometric basic equation as will now be shown. 

H Of 
As mentioned above,  Kondo'r  A.   and BBS'   D    are numerically 

J a 
equal.  Their meaning can be interpreted as a distortion of the 

lattice from the reference state to the final state.  This distortion 

has the form I + 3, where 8 is identical with our previous distortion 

tensor (I s  2nd rank unit tensor). Then for small distortions the 

i     a 
reciprocal distortions represented by A and E. are equal to I - ß. 

If we substitute this into eq. (IV.21) and (IV.38) and we neglect A 
H 

a „ 
and D p standing before the parentheses with respect to I, then we a — — 

get 

and 

rrw-i  =  - I (A, &l - d* O (IV. 53) rionl 2 \ m    k        km/ 

X      *" 
L°    .  -  -I(-l--j)  . (IV.54) 

These equations are identical (the use of Latin and Greek indices, and 

the difference of signs is caused by the different conventions used by 
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Hondo and BBS).  Also, we see that eq. (IV.54) is identical with our 

geometric basic eq. (1.17) in the case of small distortions if we also 

consider eq. (IV. 15).  Furthermore, eq. (IV.42) can become a real 

vector equation if we relate all quantities on the right-hand side to 

the reference state as in section 10.  After comparison with (1.14), 

we get the geometric basic equation with the interpretation for the 

large distortions.  In the general case of large distortions we need 

the basic equation related to the coordinate of the final state, since 

the equilibrium conditions are also related to these coordinates. 

Then we have to use the basic equation« in the form (IV.21) and (IV.38), 

respectively. 



CHAPTER V 

APPLICATIONS 

Problems treated from the point of view of continuum mechanics, 

as they are no   ly formulated in the classic theory of elasticity, 

have not previ  -ty been investigated using the continuum theory of 

dislocations o.cause there had been too little time since its develop- 

ment.  The problem previously treated by continuum theoretical methods 

were mostly of the physical kind and normally dealt with single dislo- 

cations and atom6.  It is a principal feature of modern plasticity 

research to understand from first principles basic phenomena from the 

microscopic point oi view.  So with this method it is possible in prin- 

ciple to succeed in the investigation of work hardening of metals. 

In section 29 we will discuss to some extent work hardening, since we 

assume a certain interest in this by our reader. On the other hand, 

we will show how mathematical problems appear during such considerations. 

The phenomena of work hardening is not purely mechanical, but of com- 

plex physical nature, and at best we can only give a rough impression 

of how such problems are solved nowadays.  For a representation of the 

current level of work hardening theory, we refer the reader to the 

new encyclopedia section of Seeger [135]. 

According to our opinion the description of point lattice 

defects (interstitial atoms, vacancies, etc.) as elastic dipoles or 

centers of polarization has a fundamental significance; therefore we 

207 
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will discuss four problems in section 31, which will show in a very 

impressive way which far-reaching problems of such elastic singulari- 

ties we -an solve with the simple formulas of section 19.  Surely it 

would be a very advantageous task for experimental research to meas- 

ure ;s much as possible the strength of a dipole and the polarizabil- 

ity for inclusions of atoms B in the solvent A and to put it down in 

tables, as has been done long ago for electric and magnetic dipoles 

nnd the polarizability. 

Finally, in section 32 we will show examples of the practical 

use of the stress function tensor.  We think that the complete explor- 

ation of this tensor will give some results of practical importance 

for which we believe that investigation of the three-dimensional and 

also the rotationally symmetric boundary value problem is very neces- 

sary. Now these are problems mainly of mathematical nature, and 

section 32 should be regarded as a stimulation in this sense for mathe- 

matical groups.  Beside this, section 32 includes the important results 

for circular dislocations, which cannot be found in the previous 

literature. 
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S29 The Work Hardening of Face Centered Cubic Metals 

One of the most interesting problems, but simultaneously most 

difficult, of modern solid state physics is the work hardening of 

metals.  Fig. 30 shows the typical work hardening curve of a face 

centered cubic single crystal as we observe it during a tensile test. 

It is not possible to deduce the curve from the basic equation of 

continuum mechanics or any theorems of solid state physics, but it 

is mostly due to empiricism.  We have a certain model of the procedure 

which occurs in the interior of the body during plastic deformation 

and ve investigate under which conditions this leads to work hardening. 

Then we carry out the cor responding experiments and examine how far 

they agree with the theoretical considerations.  By this method it was 

possible to understand the three distinct regions of work hardening I, 

II and III in Fig. 30. 

In the year 1934, Taylor [149] first had the idea that self 

stress fields are produced by dislocation motion and concentrations 

during plastic deformation, and these stress fields try to hinder the 

motion of dislocations.  This qualitative concept still holds. 

The stress field in the crystal caused by external loads can be 

decomposed into its components with respect to the slip plane and slip 

direction.  In one of the slip systems the shear stress will be the 

greatest; we will call it r.  This so-called primary slip system will 

act first.  If the crystal is orientated favorably with respect to the 

tensile axis, then this slip system remains mostly responsible for the 

plastic deformation up to large deformations.  Fig. 31a,b show how m 

elongation of the tensile sample occurs by slip on one slip system alone. 
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For theoretical investigations generally we plot the external shear 

stress in the primary slip system versus the slip.  This quantity is 

defined to be the ratio of the plastic relative displacement of two 

lattice planes, separated by the distance d, to d, so that the plastic 

p 
distortion is fl  when i is the normal to the slip plane and j the 

»J 

slip direction at the related point of the work hardening curve. 

Furthermore, we call this slip v  Simultaneously T has the meaning of 

a flow stress, for Fig. 30 is a plot of the stress which is necessary 

to obtain further flow of a crystal which has suffered a strain y. 

The flow stress of a pure metal can be decomposed according to 

Seeger [137] into two parts 

T = T_ + T_ 
S   G 

where T is that part which dislocations in the primary slip plane 
ö 

need to cut dislocations which are in other slip planes and which 

intersect the primary slip plane (citen called the dislocation forest). 

T- is necessary to overcome the long range stress fields of other 
G 

dislocations in the primary slip system.  In many cases T is of no 

importance relative to T_, therefore, we will only discuss T_. 
G G 

Frank and Read [51] mentioned a mechanism by which closed 

dislocation loops can be developed by applying a shear stress on 

associated slip system. For this we need a sufficiently long piece of 

dislocation AB (Fig. 32a"i which is fastened in some manner at its ends, 

perhaps so that it makes so-called dislocation nodes, which are often 

immobile, with other dislocations (this is not shown in the figure). 

Under an appropriate shear stress, the dislocation first bows out 
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• ■' (Fig. 32b). According to eq. (11.148) the force on the dislocation 

iä-it in  the stress field is always perpendicular to the dislocation line; 

wR therefore this bows out successively to the form of Fig. 32c,d. 

,i • The curved pieces at C have the same Burgers vector but opposite line 

V direction, so they are dislocations with opposite sign, therefore, 

* they attract each other according to section 18 till they have anni- 

hilated, thus the newly developed loop (e), and the original line AB 

remain. Afterwards this procedure can happen again. This develop- 

ment of dislocation loops is analogous to the development of soap 

bubbles, the line tension of the dislocation plays the part of the 

surface tension of the soap bubble. The necessary initial line AB is 

also present in undeformed crystals in sufficient numbers, since even 

during growth of the crystal a "network" of dislocations is developed 

1 2 in the crystal.  The number of dislocations cutting an area of 1 cm 

In theories of the growth of crystals, dislocations play the 

principal role  See Frank [49], Verma [154), Dekeyser and Amelinckx [32] 

7 
is of the order of 10 for many metals and it increases with deformation 

by several orders of magnitude. 

In Stage I of work hardening, usually called the "easy glide" 

region,  the so-called work hardening coefficient, dT/dy,  is relatively 

small.  Dislocations can form and move without great hindrance.  From 

the length of slip lines on the surface of the crystals (which were 

polished before the deformation) as seen by the electron microscope, 

we can conclude (Mader [196]) that here the dislocations travel distances 

similar to the cross-sectional dimension of the crystal (mm). 
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The much larger work hardening coefficient In the Stage II work 

hardening Is caused by the presence of Lomer-Cottrell dislocations (§24) 

which greatly restrict the slip distance of dislocations.  A dislocation 

due to a Frank-React source may meet another dislocation which moves in 

a second slip system, thus a Lomer-Cottrell dislocation reaction may occur. 

All the other dislocations of the source mentioned then caniot 

pass this obstacle; as a result they develop dislocation walls according 

to Fig. 24 (however, with variable distance between the dislocations) 

Seeger, Diehl, Mader and Rebstock [143] investigated theoretically and 

experimentally the procedure of work hardening starting from this assump- 

tion and succeeded in explaining more or less quantitatively the linear 

increase of the work hardening curve in Stage II, 

In Stage III of the work hardening curve, the work hardening 

coefficient is smaller again.  Nowadays it is explained by the assumption 

that with greater external shear stress the possibility arises that the 

dislocation can move around the obstacle.  For this to occur in every 

case the dislocation line (§24) dissociated in the slip plane must be 

Constricted over a length of several interatomic distances.  This is not 

possible under the action of stresses which act at the dislocation alone, 

because this requires an increase of free energy of the order of eV at 

the place considered (see footnote 1 pg. I.  ).  Thus the distance 

between the two partial dislocations is reduced only by the resulting 

external and internal stress at the dislocation; the rest of the energy 

which is necessary to constrict the dissociated segment (the so-called 

activation energy, Q) must be contributed by thermal fluctuations. 

Evidently P depends on the stress, and only if the stress is large 
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Initially we will follow the discussion of Schoeck and Seeger 

[133] and Seeger [134] (pp. 61p et seq.).  If the length, 21,   along 

which the dissociated dislocation is to constrict is very large with 

respect to the dissociated width, 2T\  (Fig. 34), then the dislocation is 

almost in unstable equilibrium, because >.ne probability that the dislo- 

cation will dissociate in a primary slip plane is much larger than that 

for it to dissociate into a cross slip plane.  The shorter the distance 

enough; i.e., Q is sufficiently small, can the activation energy be j 
1 

contributed by thermal fluctuations. 

Accordingly edge dislocations do not have more slip opportun- 

ities, since there exists only one slip plane orientation for them, 

I 
according to §24.  However, according to §24, it is possible that screw 

jjlanes, can dissociate into another fill"} 
dislocations lying along (110) directions the intersection of two {111j ^ 

plane which becomes the so-called "cross slip plane," after removing 

the previous dissociation.  Fig. 33 shows this procedure.  The newly I 

obtained freedom of motion of the screw dislocation leads to the 

expected decrease of the work hardening rate. 

Seeger, Diehl, Mader and Rebstock [143] convincingly proved 

the truth of these representations by electron microscopic photographs 

of polished crystal surfaces.  For a complete concept of work hardening 

in Stage III, there is the investigation of a problem which we have 

waited to discuss until now because its mathematical difficulties have 

not been sufficiently solved till now. 

This problem is investigated presently. 
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2&  is. the more the primary slip plane is preferred.  However, if a shear 

stress T  is present on the cross slip plane, then this plane is pre- 

ferred because the dislocation bows out into this plane and slips. 

Thus, the shear stress T can do work.   Hence, we conclude that an 

Notice:  The resulting force on the blocked dislocations in the 

primary slip plane is approximately zero; otherwise they would move. 

equilibrium length 21  is related to each such shear stress, and for this 

length dissociation in the primary and cross slip plane have the same 

probability.  At least along these lengths slip of the blocked disloca- 

tions in the primary slip plane must be obstructed if the detour into 

the cross slip plane is to occur.  The activation energy Q for this 

procedure is that energy which thermal fluctuations have to contribute 

to produce the configuration of Fig. 34 from two parallel partial dis- 

locations separated by the distance 2T). 

From experiments we can find a value for the so-called specific 

stacking fault energy, the energy necessary to produce a stacking fault 

2 
which is spread over the whole crystal measured per cm of the stacking 

fault area.  The activation energy Q contains the following parts: 

The (positive) energy E  necessary to bring the partial dislocations 

into the position of Fig. 34 (in which they are longer than before) and 

the (negative) stacking fault energy E ., which we can recover if we 

reduce the stacking fault area. 

The exact calculation of the activation energy is rather dif- 

ficult, since the shape of the dislocation line is not known, but has 
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to be determined by a variational calculation.  For this *e apparently 

can use only direct methods.  Since there is no physical reason for the 

symmetry of Fig. 34, we will describe the orocedure by the simpler 

arrangement of Fig. 35.  We take for free parameters the cross slip 

length 21, the dissociated width 2T| and the tangent to the dislocation 

line at the nodal points K and K'.  The calculation of the part E  is 

trivial.  The part E  , which presented great difficulties previously, 

follows very simply from formula (11.136).  The main part of the work 

is caused by the energy E .  The line 2 consists of three parts a,b,c. 

We write E„„ = E  + E.. + E  + E ,_ + E  + E,. E^  can be obtained 
22   aa   bb   cc   ab   ac   be   bb 

vary easily by eq. (11.144), similarly E . , E^ , for then one of the 
ab  be 

two line integrals of eq. (11.128) can be obtained in an elementary 

fashion.  Since E  = E,^, the calculation of E  and E  is the hardest 
aa   bb aa     ac 

problem.  However, the branches a and c are relatively far from each 

other, thus E  certainly will give a small value, which is not so 
ac 

important, with respect to E  , and we can obtain this quantity by a 

simplified approximation.  Accordingly, the important part is energy 

E  used to force the branch a from its straight shape into the curved 
aa 

shape of Fig. 35. We will solve the problem of the self energy of a 

curved dislocation in the following section, and we will see that we 

can succeed if the shape is not too complicated. 

So nowadays we are in a position to treat successfully with 

method of continuum theory problems of the activation energy of the 
\ 
i 

kind described above which appear very often in solid state physics, 

and we can confirm or disprove conclusions drawn from experiments 

dealing with elementary phenomena in the solid body. 
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Ihm  stacking fault energy Is relatively large In aluminum In 

contrast to copper, therefore the dissociation and the activation energy 

is very small, and we would expect that Stage III work hardening begins 

at lower stresses than in copper. This is confirmed very well by experi- 

ments.  It is very satisfying that we can nowadays understand almost 

quantitatively the differences in work hardening properties of face 

centered cubic metals, which were very puzzling some yc*.rs ago.  We 

understand far less the work hardening of body-centered cubic metals. 

§30 An Approximation for the Calculation of the 
Self Energy of Singular Dislocations 

The self energy of a bent dislocation is important for many 

problems of solid state physics.  In contrast to older methods, where 

we had to calculate at least one line integral of a function given as 

a surface integral to get the self energy of the dislocation, the 

reduction of the problem to the double line integral (11.145) is a 

great advance.  However, this also can only be solved exactly in the 

simple cases. According to Kröner [83], we will succeed in complicated 

cases with help of the approximation we will describe now. 

The starting point is eq. (III.145) in which we assume the 

cut length e to be given.  We will take e according to eq. (III.58) 

for the partial dislocation mentioned in the last section. The 

integrals in eq. (11.145) will have the form 

dl/ dL 

11 x - x' 
e >~ ~ 

(v.i) 
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or for», which we get If we use the expression (x - x')-(x. - x')/ 

(x - x') or (x_ - x') (x - x') as a factor with the Integrand. 

The calculation of the latter Integrals does not differ auch froa 

that of eq. (V.l), thus we can restrict ourselves to the treatment of 

(V.l) to get 

dL = dxx lx  + dx3 1^.   dL' . dxj Ll + dXg lg (V.2) 

thus we have to calculate integrals of the form 

/.2 
|x - x'| = Jix^x'j*  + (x3-x^r (V.3) 

/  / 
For this we have to substitute one of the terms x ,x or x ,x , 

X  o     X  «S 

respectively, by the other in the curve equation x = x (x ).  If 

the dislocation is piecewise straight, then the integrals can be 

determined in an elementary fashion. For second order curves we get 

elliptic integrals.  In other cases the integral can only be deter- 

mined numerically.  In the case of section 29, where the curve equa- 

tion consists of free parameters, this procedure would be much too 

complicated. The following method will often lead to results in 

many cases. Let 

x^ - x^.2 

li " x'l = lx3 - 
X
3I V

1 + s> s s (— 7) (V.5) 
x„ - x„ 3   3 

I 
end we expand the roots w(s) in the interval 0 £ s s s by Legendre 

polynomials of s.  If w(s) is a parabola, we can expect a good conver- 

gence if we do not take S much larger than 3. The estimation of the 

error is not very hsrd because of the simple form of w(s). E.g., if 

the dislocation never makes an angle < 30° with the ± x -direction, 
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then apparently 0 •• a £ 3, and the expansion converge» well along the 

whole dislocation.  If, however, the dislocation has nearly vertical 

pieces in addition to nearly horizontal pieces, we will use in addition 

to (V.5) 

x - x' 2 
jx- x'| = |x - x'| Vi " n7sT,  . »(-i i)      (v.6) 

X3 " *3 

and w(l s) will be represented hy Legendre polynomials. However, it 

would be worthwhile to investigate whether we can avoid the complica- 

tions connected with this if we use in addition higher order terms of 

the expansion of w(s) by which we can enlarge the region 0 £ s £ S, so 

it may be possible that it is not necessary to use w(l/s).  This proce- 

dure may be recommended for the calculation of the energy E 
AS 

The amount of calculation is mainly determined by the shape of 

the dislocation.  If x (x ) is a polynomial, then the integrations are 
1   J 

elementary. The same holds for hyperbolas x ± a = c/(x ± b) and this 

statement holds also for finite pieces of hyperbolas. Apparently we can 

describe the line elements a,c in Fig. 35 with such a hyperbola and now 

we can calculate the energy in an elementary fashion. The amount of 

the calculation is tolerable. 

Evidently we can use the same method to calculate the inter- 

action energy of two bent dislocations according to eq. (11.128). 

Then we can also determine the activation energy related to the arrange- 

ment of Fig. 34. 

The component Tc of the yield stress is due to the mutual inter- 

section of two dislocations. According to Heidenreich and Shockley [64] 

the dissociation of the dislocation has to be removed at the point of 
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intersection. Then according to Figs. 34 and 35 we get a so-called 

constriction (Stroh [148]) by letting 1 = 0. Sch'öek and Sch'dek and 

Seeger [133] were able to calculate the activation energy for the cutting 

of dislocations in some cases, which agreed sufficiently with experimen- 

tally measured activation energies.  (See also Seeger [136]). 

§31 Foreign Atoms as Elastic Dipoles and 
Centers of Polarization 

We speak of r^reign atoms if there are some atoms of type B in 

a lattice of atoms ol  type A.  They can be at a regular lattice position 

of an atom A (substitutional) or they can be in a so-called interstice. 

This especinlly 1 appens if atom B is small in comparison to atom A. 

Even very small numbers of such foreign atoms can influence the "struc- 

tural sensitive" properties of the medium (Smekal [145]). The changes 

of the properties ol iron in which carbon (C) is dissolved in small 

concentrations is well kn vn. The C-atoms are in an interstitial posi- 

tion here. According to Cottrell [23] and Cottrell and Bilby [25], the 

interaction of the (.-atom with dislocations in iron governs, e.g., the 

familiar yield point phenomenon of steel. 

Fig. 36a shows how such a C-atom is placed in the body-centered 

cubic lattice of rion.  In order to have enough space it has to push the 

neighboring atoms. Obviously we get the same state of distortion of 

the lattice in the surroundings if instead of the C-atom we apply forces 

of magnitude P w1 ich press one atom up and the other down.  If a is the 

interatomic distance in the normal state, then we have here a force 

dipole with P _ = :' the only component different from zero. 
mm 



220 

The model mentioned above Is a little bit too simple. For an 

exact discussion we have to investigate the forces which keep the atoms 

together. This is determined by the particular distribution of the elec- 

trons. We can Imagine that the C-atom not only changes the forces 

between the neighboring atoms, but r1 so that other atoms of the neigh- 
Then we must realize that, 

borhood will be affected, /c-atoms act not as a single dipole P  , but 

that also other dipole components and higher components will play a part. 

According to experience the direct interaction between atoms decreases 

rapidly after one interatomic distance to such an extent that we can 

describe the C-atom in the position of Fig. 36a to a good approxima- 

tion by its dipole components P  as well as P  and P „. 

Fig. 37, an example of a substitutional atom, shows that the 

foreign atom is replaced by a number of force dipoles which are oriented 

at an angle of 60° to each other.  It can be shown that the displace- 

ment field which results from such a dipole arrangement is that of a 

center of dilatation P .  In the continuum a center of dilatation 
mm 

represents a small compressed sphere. 

This statement holds in the case of the face-centered cubic 

lattice, but not necessarily for the hexagonal lattice, since in the 

latter the elastic stiffness with respect to dipoles depends on their 

direction, thus we need different dipole magnitudes to displace oppo- 

sitely placed atoms the same amount. 

For many problems it is important to know the energy with which 

a foreign atom is bound to a dislocation. In general, a dislocation 
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exerts a force on a foreign atom due to its elastic deformation field 

according to eq. (11.156).  If we move a foreign atom from a position 

with zero strain to a position with strain c . in the neighborhood of 

the dislocation then we may release energy, following from eq. (11.165). 

The motion of such an atom always becomes possible by thermal fluctua- 

tions.  If we apply a shear stress then (at least at room temperature) 

| 
the dislocation may move with a much larger velocity than the inter- 

I 
stitial atom which tries to keep up with the dislocation.  Therefore 

there is a tendency for the dislocation and interstitial atom to become 
i 

\ separated due to the applied shear stress. However for this to occur 

an energy of the magnitude of the "binding energy" between the foreign 

\ atom and the dislocation must be supplied. According to Cottrell the 
j 

dislocation in the normal state is surrounded by a whole cloud of C-atoms, 

f thus a rather big energy supply is necessary to separate the dislocation 

I 
from the cloud and make it able to move.  This leads to the familiar 

\ 
\ 1 I yield point effect. 
I 
i - 
|   

According to the latest considerations of Seeger [135] this 

argument should be modified. 

Now we will investigate the interaction of the C-atoms with 

a screw dislocation, where we will methodically follow the representa- 

2 
tion of Cochardt, Schöek and Wiedersich [16]. 

2 
Cottrell and Bilby described the C-atoms mainly as centers of 

dilatation, therefore they did not obtain an interaction with a screw 

dislocation according to eq. (11.118). As this author mentioned and 
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(Footnote 2 continued) 

especially Crussard [27] and Nabarro (1071 emphasized, wo should obtain < 

an interaction of a C-atom and a screw dislocation because of the tetra- 

gonaltty of the distortion.  Cochardt, Schöek and Wiedersich first 

investigated this quantitatively.  However they do not use force 

dipoles explicitly, but their method is very similar to ours. 

In iron the screw dislocation is directed along the (ill) direc- 

tion.  The starting point is the two equations 

Kk *  Pij \  eij (V7) 

Ü . - Py hi (V.8) 

from section 19.  In polar coordinates o »cp.z with the z-direction = [111] 

and 9 = 0 in the [211] direction, the deformation field follows from the 

stress field (11.118) of a screw dislocation and has only the component 

£=€= — . (V.9) 
zcp   cpz 4vp 

According to eq. (V.8) a force is only then exerted on a dipole in the 

field of a screw dislocation if the dipole has a zcp- or a cpz-component. 

The force dipole can be transformed as a tensor into the p ,cp,z system. 

According to common rules it is 

P  = P  = (i -i,)(i -i.,)P,, . (V.10) 
ZCp     CpZ    -Ccp ~1' ~2 ~1  11 

Let i = i  cos cp + i   sin cp, then i  is the unit vector perpen- 
~<F     ~H>o ^90 ~*o 

dicular to the vectors 

-i«- [^i- ^T ^i1 ■Ddi«p90-
t^l'-^l'-^?]-1 
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(Footnote for preceding page) 

We see at once that these i and i   are unit vectors In the 

[111] and [211] direction, respectively. 

i  = 1 x i   has no component in the x -direction, as we may check; 
-^Po  ~*  -V90 i 

thus we finally obtain for eq. (V.10) 

%  = P?z = 4- Pll 8in «P- <V11) 

Since e., depends only on p, according to eq. (V.7) the dipole suffers 

(V.12) 

Y* 

a force 

v                b       sin cp 
p           _    /—          2       11 r             3 V 2 TT     0 

This is an attractive force in the region 0°< cp < 180°, a repulsive 

force otherwise. If we employ the same procedure for P  and P „, 

we obtain formulas which follow from eq. (V.12) by substituting for 

9 by cp + 120° and cp + 240°, respectively. Apparently this is a result 

of the fact that the [111] direction makes the same angle with the 

x-axis. 

From eq. (V.8) with (V.9) and (V.ll), we immediately get the 

energy of the dipole P .. in the elastic field of the dislocation to be 

bP 
u = _ _Jü_ 2ÜLSÜ . (v.13) 

3V^"TT  
p 

The application of these formulas is prevented initially for 

the case of the C-atom, since we do not know its dipole magnitude. 

Today it is only possible to obtain this experimentally by using a 

theory which allows us to connect the dipole magnitude with experi- 

mentally measured quantities. There is no procedure which we can apply 

in every case. 
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Eshelby [39] described the following method for measuring the 

magnitude of the dipoles composing a center of dilatation:  Dissolve 

a number of atoms of type B in a metal A (e.g., Al in Cu) and measure 

the change of the lattice parameter which occvrs.  This depends on the 

corresponding concentration of B atoms in A and on the strength of the 

center of dilatation.  Eshelby gave the necessary equations for calcu- 

lating P.. from the change of the lattice parameter. 

We will show now that this method can be extended to the case 

of arbitrary force dipoles.  If we distribute a number of force dipoles 

statistically uniformly in an initially homogeneous body A, then it 

generally changes shape and volume.  If we considered certain physical 

volume elements, each of which includes many such dipoles, but which 

are on the other hand small "ith respect to the external dimensions of 

the body, then we can state that an average (macroscopic) deformation 

Q 
e  is impressed on each volume element by the dipole distribution (§6). 

If we assume that the concentration is constant with respect to the 

volume elements, which is generally possible in experiments, then the 

connection of the body is not disturbed by this impressed deformation, 

i.e., there are no (macroscopic) elastic deformations necessary to keep 

the body compact.  Accordingly, the impressed deformation is the observed 

T 
total deformation £ .  The macroscopic stresses vanish. 

However it is obvious that we cannot distinguish macroscopically 

6 7 
if we have 10 dipoles at the strength A.. or 10 dipoles of the 

strength A /10, with other words, we imagine the N dipoles of the 

strength P.. substituted by a constant dipole density p  , which can 

be determined by the condition 
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in»«av ■ »uv -»«• (vu) 

Rieder [122] called such a dlpole density, taken negative, an extra 

stress; the nomenclature "impressed stress" is also meaningful. This 

is connected with the impressed deformation by the equation [123], [122] 

»»« " Cijk£ & (V15) 

as we easily see.  Since p  is known, we have simultaneously the 
• J 

We imagine that surface forces are applied simultaneously with 

the dipole density such that initially no deformation occurs.  After- 

wards we can cut the volume elements and can measure the forces p  dF 

which we have to apply in order that no displacement occurs. The 

following deformation during the relaxation is connected with the 

stresses by ütooke's Law.  Also we realize that we have to deal with 

small p ., i.e., small concentrations, for otherwise eq. (V.15) will 

not hold. 

S T    Q total deformation of the body e.. ■ e .  Conversely we obtain the 

dipole strength to be 

{ Pij * (V/N) Cijk£ eL (v-i@ 

\ 
I „ , .  T 

where the concentration, N/V, and the total deformation c.. is known. 
ij 

This method holds only for small deformations because we assume 

2 
Hooke's Law (V.15).  Such deformations can be measured easily. 

I 2 As the sample must generally be melted to put the dipoles in 

i 
{ it, the dimensions with and without dipoles can hardly be compared. 
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However, more difficult considerations are necessary to assure that the 

change in the lattice parameter determined by x-ray techniques is 

really the macroscopic deformation.  Microscopically we do have stresses 

and elastic deformation fields which change cheir sign over distances 

of the order of the average distance between the dipoles.  However, the 

corresponding investigations of Miller and Rüssel [101], Huang [66], 

Tetlow [150] and Eshelby [39] seem to solve this problem. 

See the discussion of Eshelby [39], 

The C-atoms are statistically distributed over the three possible 

positions in the body centered cubic iron-carbon—-we will call them the 

1-, 2- and 3-position.  In this case we can only njtice a continuous 

dilatation of the lattice and so we obtain only an average statement 

about P .  However in Martensite the C-atoms are arranged tetragonally 

(e.g., all in the 1-position) then we expect a strong dipole P  and two 

weak dipoles P _ and P . 

Kurdjumov and Kaminski [85] gave an increase of the lattice 
o 

parameter C in the 1-direction from 2.86 to 2.96 A for 1 weight % C 

-22  3 
in Fe (corresponds to V/N = 2.58 - 10   cm ), while simultaneously 

the c/a ratio increases from 1. to 1.04.  (a = lattice parameter in 

T 
2- and 3-direction).  This means a strain e... = 0.035, 

eIo = eIo = " 0.0048.  With C    = 2.37 • 1012 dyne/cm2 
22    Jo X11X 

12       2 2 3 
C    =1.4. • 10  cyne/cm , it follows from eq. (V.16) easily 

2 
C1U1 = C2222 = C3333 S Cll'C1122 = C2211' etC' ~  C12C11 and 

C,_ are from Zener [158], page 17. 

3 1 eV = 1.6 • 10"*12 erg. 
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P11=11.2eV.   P22 = P33 = 4.6 eV. (V.17) 

From eq. (V.13) and the corresponding equations for P  and P , 

we get the energy of the total dipole represented by the C-atom at 

a distance b from the screw dislocation and for cp = 90° (where juj 

has its maximum) to be 0.5 ev. 

The difference between this and the value of 0.75 of Cochardt 

and collaborators is caused by the fact that these authors used the 

isotropic ^bung's modulus.  This is an important and useful example 

of how large the difference can be if we do not consider the elastic 

anisotropy of the crystals. 

We will briefly discuss the application to the important Snöek 

2 
effect [146].   If we apply a stress a.,  to the crystal of Fig. 36a 

2 
The Snoek effect is often used to determine the smallest C- 

concentration in Fe [75].  Zener [158] treated this effect theoret- 

ically very sufficiently and in parts we follow his representation. 

The reduction of the relaxation of the elastic coefficient s._,, . due to 
ljki 

the force dipole represented by the C-atom is new and very impressive. 

so it is strained in the x -direction, then the C-atoms prefer to 

switch over into the 1-position (Fig. 36b) since they have more room 

there.  The total displacement is composed now of the elastic part 

e  = s , . a  .  and an additional quasilinear deformation 
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€,. = s  , p . (eq. (V.15)), where p . is the change of the dipole 
ij   iJK*. kx kJE 

density due to the motion of n dipoles from the 2- or 3-position to 

the 1-position. Therefore the total strain is 

«Ij-'ijki^w*^- (vl8) 

In this p  should be expressed in terms of known quantities. 

12   3 
P, .. P..,. P. . are the dipoles in the three different positions. 
ij  ij  ij 

2      3 
Then because of the similarity of P  and P. , it follows from 

eq. (V.14) 

pu = jf(pii-pL)- (vi9) 

According to Zener [158], we can easily find n from Boltzman statistics 

to be 

2      Ul  " U2 K • U
2' |S-yI       ,_      ,       for      —  lJT,        « 1 (V.20) 9 kT      ' kT 

where U    is the elastic energy of the dipole in the 1-position, 

similarly U  .     From eq.   (V.8)  it follows that 

IL  - U„ = - (P1,  - P2.)e.„ (V.21) 12 ij ij     ij 

with which we obtain 

Pk^lvkT(pkx-pL)(pij-pij)eij (v-22) 

In this we substitute e.. = s^,      a      and p. - into eq.   (V.18) so 
ij        ijmn    mn kx 

we get 

eIj=  (sijk£ + A8ijki)CTki (V'23) 
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with 

isijki ■ I VET 
Qij Qkr      % * sijBm

(pin-pL>- (V24> 

The quantities s.., , + As,., , are called the "relaxed" elastic coef- 
ljki    ijk2 

ficients, and they are measured statically by the ratio of total 

strain to applied stress.  In spite of this we can measure the 
I 
| "unrelaxed" elastic coefficients s. ... with vibrating rods, where the 

period is so small that a rearranging of the dipoles (the "relaxation"), 
1 

which always requires a finite time, cannot occur.  Zener, whose results 

i 
$ are quantitatively the same as ours, furthermore describes the way in i 

which ^s       ,  is a measure of the magnitude of the damping.  For this and 
ft 1J K x 

| the comparison with experimental results, which are very satisfactory, 

I 
see Zener [158]. 

Finally, we will discuss briefly the polarizability (§19).  We 

assume the sample does not contain dipoles but rather centers which 

can be polarized.  Important examples are lattice vacancies in many face 

| centered cubic crystals.  Analogous to the circumstances in electro- 

I 
I  ; ^  
| Seeger and Bross [142] previously calculated from electron 

theory that the dipole strength of a lattice vacancy is approximately 

zero. 

dynamics, we can call such a medium "dielastic" in contrast to a body 

with dipoles, which is called "parelastic." Parelastic bodies always 

have a certain amount of dielasticity. 
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For instance, if we apply a homogeneous stress a,  to a 

dielastic rod, then dipoles P   of density p   are induced.  We 

obtain 

ind  _/ y„ __v 
aij + pij   =ciju€ki 'V2M 

instead of  the normal   Hooke's Law 

°ij = Cijk* \l (V'26) 

which we would obtain if no dielaaticity were present.  The combination 

of both equations becomes 

and 

rijki " Cijki * CijU (v-28) 

is the "elastic susceptibility"  of the sample.     Because p        = P       (K/V), 
ij    lj 

the elastic polarizability of eq. (11.169) is given by 

Rijk£= (V/N)rijkr (v-29) 

In many cases c: , . and c' , . can be accurately measured as elastic J ijk£     ijk£ 

moduli of samples with and without centers of polarization; thus the 

polarizability of defects is relatively easy to obtain.  The interaction 

The effective modulus, CJik*» °* 
a sample with centers of 

polarization appears smaller or larger with respect to the modulus 

without centers depending on the sign of p . /e ..  According to Zener 

[159], all self stress sources have additional effects which reduce 

the modulus.  This effect is reduced to the determination of the increase 

of the oscillation entropy of the body by increasing elastic deformation, 
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(Footnote continued) 

so In contrast to our effect it depends very mich on teaperature. 

Therefore it should be possible to separate these two effects 

experiment ally. 

of dlelastic lattice defects is mainly determined by the polarizability. 

This is an interaction with a very small region of influence (force is 

proportional to the -6 power of the distance), while the force of dipoles 

goes with the -4 power. 

§32 Applications of the Stress Function Tensor x'to 
Rotationally Symmetric and Three-dimensional 

Problems 

Let cylindrical coordinates o, V,  z  have i , i , i as the 
-o -<p ~* 

corresponding unit vectors (length I).    The components of the stress 

function tensor x'ro&y not depend on cp. Then as can be easily checked 

we can write the secondary conditions ^tX*4 = 0 of section 12 

-^-^VP^
0 (V

-
30) 

2   dp      dz 

1 a<PV}   ÖX"   „  r-e  + __— = 0 • 
p   .p      dz 

(V.30") 

If they are satisfied, then the stresses follow most simply from 

eq. (11.23) 

g_ = 2G[Ax_' + JJ-J- (V * -  AOxJl 

with Xi S *p'p + Vp + <z-     lt  is With *p'p + Vp *  V \'p "Vp = *- 
that 
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» A2 

(o   +<?    )/2G = Ax'  - ;TT (A + —r>x; 

2 

(o „-o    )/2G =  (A - -r)X    + r-T(~-2 * T 57**1 PP    W 2    -      m-1 ^2     p   ^p     I 

a     2G = AX'    - JL (Ä --^)X;, zz Azz      m-1 ,  2 *I 
ÖZ 

•,^» ■«- T?H'. ♦ ä «Ä»; 

The Cartesian components of xli  satisfy the eq.   (11.20) 

ÄAxJj-V (V.3D 

From this immediately follows 

AAX; = V      AAxi.-V (V'32) 

More effort is necessary to obtain the other equations 

(A-4p(A-4)xl-T|.  - (A-4)(A-4)y'    =T| (V.32') 
p p p p      *"*       ff 

(A-^XA-^, « Tl       ,     (A-iXA.i)^, . y. (V.32") 
P pHM p pYY 

Since V.T). . =0, 1  Is restricted by the conditions corresponding to 

(V.30).  We notice that the components of x_' are initially coupled in 

the differential equation, however the condition (V.30) always connects 

(VV*;z>' ^Vv* and (xi»^'«)- often lt is p°ssible to sfty 
that o     - a     =0, then we can neglect *1    and v/   .    Furthermore, ?pz       cpp ^z ^p 
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if 7]  = T)  =0. then we only need Y  and \  to obtain a particular 

integral.  Although we still did not find a rigorous proof, it is very 

can likely that all states of stress in which div a. T\, a    , ?  vanish 
' — •*■  cpz  p¥ 

be expressed by \'    and \     alone.  We generally use Love's displacement 

function for the calculation of these states of stress.  In the following 

we «ill only consider the case x>  = V*. - X  = X  =0. 
cz   \JC p Z   ZZ 

It is remarkable that \     can be expressed now according to 

eq. (V.30) by \ _.  We can also write the condition (V.30) in terms of 

X,. and x' and X • respectively.  Similarly it holds for T) that 

<4-^-. X1--.-JH 1+-i-^i 1.--#-   «'.33, 

Now the stresses can be written 

,2 
'   m /. . 3 v..'       N (,cc+^) 2G=AX;-mtra + ~5)x+ , 

4 ,     m   *2  1 3 
I :c x e -  m-i > ^ p x + 

X. = 2X„ - X. ., (V.34) 

,2 
m 

2G = - 
zz       m- 

^z 
T(--~2)x, 

9 
m  ? 

'«z   " m-i 5z3o  +' 

By adding eqs. (V.32) and (V.32') related to * and Tj_, we obtain 

with (V.33) 
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2 / 
If now \   o. then it follows fro* eq. (V.33) that p y  can only 

+ PP 

have the form f(z).  If we have 1) = 0. then f(z) only can be a third 

order polynomial (otherwise eq. (V.35) will not be satisfied).  The 

stresses corresponding to f(z) follow from eq. (V.34) very simply 

2 
c  - -c  - (T -f (\z) o : all other components vanish.  If this rela- 
oo    ?c    o   1 

tively trivial stole of stress does not occur in the body considered 

Otherwise we can subtract it anyhow from the total state. 

Most results of this section for the case T] = 0 can be found in 

Marguerre [98]. 

(which is the case for every convex body loaded with surface forces) the 

function \ (and so \') has the same value as \'   . Then we can calcu- 
+ PP 

late x'■ and from this and by use of eq. (V.33) follows the formula 

Ko-^ !><*-' (v-36) 
P 

for calculating y/ , from which we get the stresses by differentiating 

twice according to eq. (V.34). If we initially calculate y' , we must 

differentiate three times to get the stresses.  We will not write down 

eqs. (V.34) in terms of x' • 
oo 

The presently unsolved problem is how to express most usefully 

the boundary conditions in y' or x .  Every biharmonic function y/ or 

x' represents a possible state of stress, thus the boundary value problem 

is twice harmonic.  From this we may conclude that the actual family of 

the states of.  stress which are governed by the Love functions (for 

div cr = 0) can also be represented by y  or x'. respectively.  Since 
- pp    + 

these functions are more closely related to the stresses, the solution 
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of the boundary value problea with these functions nay be of practical 

importance. 

These considerations showed the variety of the possibilities 

which the stress function tensor offers, thus we can adjust them very 

well to actual problems. This is of special importance for using compo- 

nents of the stress function tensor which correspond to curvilinear 

coordinates. We chose right from the beginning the secondary condition 

7 x'    =  °» hut there are many other possibilities which are presently 

almost unknown. 

Now we will treat an application to circular dislocations. 

Such a dislocation may lie in the plane z = 0 with the center in the 

origin, and radius R. 

The stress function field of this dislocation is mainly given 

I by the integral 
I 

jix dL! (V. 37) 

according to eq. (11.107) it can easily be shown that (V.37) has the 

form 

F(p,z)i . (V.38) 

according to Franz and Kröner [53] 

s3   , 2 F = ~ [2k K - (2 - k )E]                         (V.39) 
"*-   JK     "- — 

where K = K(k) and E = E(k) are the complete elliptic integrals of 

the first and second kind. Furthermore, 

k = 3ßJ*.  s2 = z2 + (R*p)2, k'2 s 1 - k2.         (V.40) 
s 



236 

From F the stress functions of eq. (11.107) follow, as we can easily 

check: 

b £   /  b 3£ 
^)p := 4TT p ' Vp  4TT ap ' (V.41) 

the other components of x vanish. The equation only holds for the 

case that the Burgers vector (magnitude b) of the dislocation is 

directed in the z-direction, because only then is the problem rotation- 

ally symmetric. 

Starting from (V.41) the author investigated an arrangement of 

parallel equidistant circular dislocations with the same radius [79]. 

This arrangement is very similar to the familiar current coil in 

technical electronics.  If we assume that the coil is very long with 

respect to the radius R, then we can use the same approximations as 

with the current coil, then we get in the interior of the coil 

a     = a     = ~ vb,  cr  = ~£ vb (V.42) 
pp   cpcp  m-1      zz  m-1 

and in the exterior 

r        R2 

a     =-a     =-^-vb~, (V.42') 
pp qxp     m-1        p2 

(v = the number of windings). All the other components vanish with 

this approximation.  The external state is exactly the state described 

above with x' = 0-  The energy per unit coil volume is found to be 

e=J2lv
2b2. (V.43) 

m—i 

There is no difficulty in principle to solve this probleu exactly by the 

use of elliptic integrals. 

The stress which occurs during shrinking a hollow cylinder onto 

a rigid cylinder with a slightly larger radius can be reduced to a 
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(Footnote Continued) 

dislocation arrangement in the boundary surface. But these disloca- 

tions are directed in the z-direction according to eq. (1.77) and they 

have their Burgers vector in the tp-direction. Our problem corresponds 

to a welding of two cylinders like the above, however, the interior is 

elongated elastically with respect to the external one the z-direction. 

Calculations of this nature are of interest for certain problems 

in metal physics.  The important facts we can see in the following 

problem:  During the cold working of the important aluminum-copper 

alloys (Duraluminum) there are the following two states among others. 

We have the two-dimensional clustering of Cu-atoms in the {100} plane 

of the Al-lattice, and most likely a one-atom thick layer of copper. 

These are distributed statistically in one case (called "Guinier-Preston 

zone I); in another a number of them are arranged in complexes (Guinier- 

Preston zone II). 

See, e.g., Gerold [59] or Hardy and Heal [63]. 

We can describe the rearrangement of the Cu concentration thus: 

a partial lattice plane of atoms in the Al-lattice is replaced by 

Cu-atoms.  Since the Cu layer is "thinner" there is a missing layer < 
I 

having a thickness equal to the difference between the lattice spacing 1 

of Al(dM)  and Cu^).    However,  the connection is maintained by the j 

atomic cohesion forces and we get elastic reactions.    The Cu-layer acts 

like a dislocation line with the Burgers vector b = d      - d      in the 

z-direction,  if this is taken perpendicular to the layer.     We will treat 

■■  «--•''ÄiKSStjäJig 



238 

this "quasldislocation" (it is not a complete edge dislocation since 

the lattice plane does not terminate) as approximately circular, in 

experiments it was noticed that (at least in certain temperature regions) 

they prefer to arrange themselves on top of each other like a "coil." 

Since the Burgers vectors are parallel we would expect the contrary to 

be more likely, for similar dislocations with parallel Burgers vectors 

repel according to section 18. 

According to Franz and Kröner [53], the opposite effect can 

be explained as follows.  One of the middle Cu-layers of the complex 

is bounded by a complete dislocation with Burgers vector opposite to 

the quasidislocations, i.e., this layer is not continued as an Al-plane 

externally.  Since the Burgers vector of this dislocation is much 

larger than those of the quasidislocations, it can attract such a large 

number of quasidislocations the sum of all Burgers vectors of the 

complex is zero.  By this also the long range stress field which requires 

energy is removed. The following is assumed today for the most probable 

arrangement of the layers in the Guinier-Preston zone II. 

Every fourth lattice plane contains copper.  For the number of 

If only every second atom in a layer is a Cu-atom, then the 

vertical size is about double. Experimentally this has not been proved 

at present. 

layers in one complex we obtain six [53].  The vertical arrangement of 

such a zone is 21 lattice planes which corresponds to slightly more than 
o 

40A and which agrees sufficiently with experiments which are very diffi- 

cult to explain otherwise. 
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We can treat the phase boundary between two pure metals A and 

B analogously. For simplicity we assume that the lattice parameter of 

A and B Is only different in the z-direction and that the phase B is 

a circular cylinder in A with the axis in the z-direction.  If the 

B i lattice parameter d of B is smaller than that of A, then now and then 
h 

a lattice plane of B must terminate, otherwise -ve would have the large 

energy of (V.43). Now we can represent each lattice plane of E as 

■1 AB        ABB i a quasidislocation with Burgers vector d - d .  If, e.g., d - d = d /5, 

than after 5 lattice planes of B we must have a complete dislocation. 

I Accordingly, we can describe a phase boundary by an arrangement of 
I 

dislocations and quasidislocations, as shown in Fig. 38.  While the 

dislocations and the quasidislocations are, considered by themselves, 

strong self stress sources (§23) together they act mainly as a surface 

cover of "dislocation dipoles" (or "incompatibility quadrupoles (§23)) 

so that their elastic effect and therefore its elastic energy is small 

If we want to calculate it, then we would have to solve a boundary 

value problem with respect to the boundary surface and have to consider 

the different elastic constants in the interior and exterior. 

Eqs, (V.43) are no longer sufficient to calculate the surplus 
i 
I energy during the transfer from the Guinier-Preston zone I to zone II, 
I 

therefore Kröner and Franz [53] calculated exactly the interaction 

energy of two coaxial circular dislocations with Burgers vectors per- 

pendicular to the dislocation-plane by using elliptic integrals accord- 

ing to eq. (11.128).  Pfleiderer [117] obtained the interaction of 

circular dislocations more generally, also starting from eq. (11.128). 
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In the following we will summarize the results, some of which are 

surprisingly simple. 

Let 

r 1 d 1   b_ 

P   <*> "fr 
P 

0 
k~ 

(2<o24 R2)K   - l<f 
2p..bk 

F -   r,2.. 
2 

z 

(V.44) )2 ♦ ^]EJ 
k'2 

2     2 

F• s ~  2VTRT^ fl^l+^-klK-lfd+V*":!^1^'    <v-44') 
dz s s   k' s 

For two dislocations AB in the arrangement of Fig. 39, according to 

Pf leiderer, it holds that 

AB 
E  -  Hll + H22 + H33' (V45) 

where 

G .A.B .   .3m-l. //  _/,  „      -m  „..A^B _/ 
Hll = 8 W^TT^* I ]'  »33 - 205=17 Gb3b3°t ■ 

H__ follows from H  by substituting bVb. by b?b_, p indicates the 

A     B 
radius of the dislocation B, b. and b. are the Cartesian components 

i     i 

of the Burgers vectors of the lines A and B. 

The equations simplify greatly if both loops are in the plane 

z(= x ) = 0 or if both have the same radius.  We have then 

Gb^R 
"ill =  3(m-l)k Ü(1-4m)k2 +  2(3m-l)]K -[-mk2+2(3m-l)]E}, 

p=R 

= J2G    AB' H33j     B = m=T    b3b3Rk[i - 5' p=R 

»ill      =27m=TTGb>!(R^)t(1-T)ii-£1' 
z=0 



H33|j5=0 
= Ä'GbM(^)f(1-T)^-y 
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(V.47) 

Proa eqs. (V.45,46) it follows that dislocations with perpen- 

dicular Burgers vectors do not interact. We obtained this result 

earlier in §18. For the problem discussed above, the energy of two 

dislocations with p = R and Burgers vector (magnitude b) in the SB- 

direction is important.  We find it to be 

~ Gb2Rk(K - E). (V.48) 

For other uses a case of special interest is when both dislocations 

have their Burgers vector in the x -direction and are in the plane 

z = 0 (this is then slip plane, the corresponding equations can be used 

for calculating the energy of piled up dislocations).  We also have 

then the very simple expression 

2*-l ^2,„ w„  k2 

20 -rr- Gb'(R+p)[(l - ~)K - E]. (V.49) 

If we choose to make the distance between the dislocations very small, 

about twice the cut length e in eq. (11.145), then we obtain the self 

energy in the approximation described in §18 and §25. The self energy 

of the dislocation in (V.49) was first obtained by Nabarro [110] in 

another way (starting with eq. (11.122).  In this case k « 1 (if 

e « R), then we have the approximation E^l, k ^ in (4/k') [69] 

and we obtain for the self energy of this dislocation 

2a""1 Gb2R(Zn ~ - 2) (V. 50) 
2(m-l)    y"    t 

in agreement with Nabarro. 

All these calculations were carried out with the assumption of 

an infinite medium. At large distances such a dislocation loop acts 
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like a force dipole, i.e., the long-range displacement field of the 

2 
dislocation varies as 1 r (r ■ distance to the origin), the stress 

3 6 
field with 1 r and the energy density e  °14

/2 witn 1/r •  Tne Part 

of the energy in the infinite medium external to a sphere of radius r 

varies as 1 r .  If the dimensions of the body are sufficiently large 

with respect to R, which is true in almost all applications, then the 

surface need not be considered, i.e., the above equations give the 

energy to practically the same approximation for the finite body also. 

For these calculations the stress function tensor took part 

only indirectly (eq. (11.128) was derived with its help).  Finally, we 

give equations derived from the stress function field x *or a dislo- 

cation with the Burgers vector in the plane of the loop (slip plane) 

(Keller, [70]). Let (x.y.z) = (x ,x ,x ). Then it holds that (see 
X       m       «5 

(V.40)) 

a      = a —r (3B - 2C + Dx )xz 
11 m-1 

CToo = °<l2c + -^r (B - 2C + Dy2)]xz zz m—l 

m     ,—      _ 2. 
a„ = a —r (C + Fz )xz 

ai2 = af-C + iiSr (B + ^ )]yZ 

(V.51) 

m 2 
a„_ = C*[-B + -—p (B + Ez  )]xy 

Zo m-i 

T31 = a*A +  ^    + mTf [A +  Cz    +   (B + Ez  )x ])    i 
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A s  L I2E -<2-k2)KJ;  B s - -ij(a2C + 3A) 
pak" %>" 

C s  6*3 2 F, D«--^(4B+C+ F«2) 
ps kk' p 

E = - -~ <a2F + 5C), F = i-j (p»k'2A - 2k2E). 
2p pi k' 

2   2   2   2 
a = -RbG/TT,  a = z + R - p . 

(V.51*) 

Notice: The stresses are not rotationally symmetric, therefore the 

problem solved by Keller with use of the stress function tensor is 

really three-dimensional. 

At the origin the only remaining stress is 

Gb 2m-l 1 
31 = 4 m-1 R 

(V.52) 
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APPENDIX 

DECOMPOSITION OF THE 2nd RANK TENSOR FIELD 

Partially we will use vector symbols according to Gibbs,  but 

normally *u> calculate with normal indices, including the Einstein 

2 
summation convention,  i.e.. 

This was recommended previously by the International Union 

for Pure and Appl. Phys. f67]. 

2 
"This nomenclature is especially emphasized in the books of 

Duschetv and Hochrainer. 

ab or a.b.  is the dyadic 

ab or a.b,  is the scalar 
       l i 

axb or e   ajbv is the vectorial 

! products of two 

- vectors a and b 

Where 6123 = e231 i;    e. €321 - e213 = -1' While 312 ~  '   132 

all the other components of the totally antisymmetric e-tensor vanish. 

The following equations will be used very frequently 

e. .. e 
ijk 

tmn 

•I 6™ 
1 •ii 

SJ 6I •; 

< •: *i 

(A.l) 
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Fro« this  it follows for n = k 

131       *f $" - j" 6* (A. 2) 
*ijk * *     i    j      *i -j 

and if additionally m = j, we have 

.   .<» -»; (*.« 

Let 

We will write the first letter with a capital to indicate 

that we are dealing with a tensor field. 

Grad a s  7a a (^a.,) 

Div T = 7-T s (7 T . .) (A. 4) 
~-    l l J 

CurlI= V XT.   «iikV6  TW> 

(Read "gradient of a", "divergence of T", "curl of T".) 

In an infinite medium each tensor field T that vanishes at 

infinity can be uniquely decomposed according to the equation 

T = 7a + 7 x a (A.5) 

where as (a. .). 

Also for an arbitrary tensor a the unique decomposition holds 

a  = b7 + S_ X 7 (A, 6) 

i 
with g a (8.J-  This substituted into (A.5) with 7 x b s c 

(i.e., div c = 0) yields 

T = 7a_ + c7 + 7 x g_ X 7 (A.7) 

where 

r-x5.x7)iX5eijkelmn7J7n9km- (A8) 
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Symbolically we write for this also 

The name should remind us that Inc e = 0 are the incompatibil- 

ity conditions of de St. Venant. These are satisfied if "the incompat- 

ibility of *■;" vanishes. 

(Inc 0>u (A.9) 

(read "incompatibility of 0").  If 0 is symmetric, then we can inter- 

change i and t  in (A.8), thus 

7 X 0S X 7 *   (7 X 0 X 7)S (A.10) 

where S indicates that only the symmetric part is considered.  If 0 

is antisymmetric, then we can interchange i and £  in (A.8) by changing 

the sign, thus 

V X |_A X V = (7 X 0 X V)A (A. 11) 

where A means "the antisymmetric part of." 

Accordingly, if we write a + c s g, a - c = h, the symmetric 

part of eq. (A.7) reads 

LS = |<Vg_ + g?) + 7 x 0,S X 7 (A. 12) 

and its antisymmetric part 

TA = |(7h - h7) + 7 x 0A X 7. (A.13) 

2 
Symbolically we can also write eq. (A.12) 

2 
For Def read "deformation of".  The name should remind us that 

e = Def s is the relation between the deformation e and the displace- 

ment field s ([52], Vol. I, pg. 97). 
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TS = Def g_ + Inc 0S. (A.14) 

Since (A.5) and (A.6) are unique decompositions, then (A.14) is also 

a unique decomposition of a symmetric tensor field. The following 

relation can be easily verified 

Inc Def s  0 
(A.15) 

Div Inc s 0 

S S This says that a tensor T which satisfies the condition div T =0, 
r 
| is an incompatibility tensor, while it is a deformator (which can be 

I S 
| derived from a vector field) if Inc T =0. The importance of the 

operations Inc and Def for the theory of elasticity is that the state 
I 
I of a body loaded only on the boundary is completely determined elas- 
I 

tically by the equations 
I 
| Inc E = 0,   Div CT= 0 (A.16) 
I 
I where we additionally use Hooke's Law and the equation of the elastic 

I > energy density. 

I A In eq. (A. 13), we can replace |_ (as for each antisymmetric 

I tensor [34]) by the equivalent vector according to 
I 
f *ij = eijk<'        <*feijk<f (A'17) 

1 
Accordingly after simple calculations, it follows that 

A       ,    _ .   _ .%       „ «A 
ij   ^ijk^kjtm T_ = eJiM_(e,_._ Vx hm + 7fc X), X = - 7i 0", (A. 18) 

or corresponding to eq. (A. 17) 

A 
1 T, = €, t    7. h + 7, X =  (Curl h + Grad X). . (A. 19) | k   kxm I   m   k ~       k 
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I.e., the decomposition of tlte antisymmetric tensor field corresponds 

to the familiär decomposition of the related tensor field Into a source 

and vortex field. 

In eq. (A.5) we can add a gradient tensor to a without changing 

1 S 
T.  Similarly we can add a deformator to P in eq. (A.14) 

Evidently the identities Ciul Grad s 0, Div Curl s 0 hold. 

S 
without changing T . Therefore we can restrict a in eq. (A.5) and 

g 
{^ in eq. (A.14), respectively by certain secondary conditions. £.g., 

g 
Div a = 0 and Div |^ = 0  are always allowed conditions; i.e. , we can 

g 
still represent every arbitrary T^ and T_ by eq. (A. 5) or eq. (A.14), 

g 
respectively, if a  and j^ are governed by the restrictions mentioned 

g 
[77].  If y_ and q are the incompatibilities or sources of T , respec- 

tively, then as we can easily check, we obtain from eq. (A. 14) in ti?e 

g 
case Div g_ = 0 

s       s   s 
Inc T = Inc Inc g_ = AA0 = •%_. (A. 20) 

«S 
Hence it follows that p_   is determined by 

I* - "& HI * <&   li'-SK (A-21) 8TT 

uniquely, apart from an unimportant linear function of x. 

00 

2 

2 S 
We recall that T should vanish at infinity.  We can easily 

check that (A.21) satisfies this secondary condition. 
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On the other hand, it follows from eq. (A.14) 

g 
Div T = (A£ + Wg)/2= Q. (A.22) 

By taking the divergence again, we obtain 

A div j = div q (A.23) 

from which we obtain div g_, apart from a constant.  Afterwards we can 

easily get g_ from eq. (A.22) up to an arbitrary constant. Thus we 

have showed how the decomposition (A.14) Is carried out in reality in 

an infinite body. 

ADDITION 

We will add some theorems concerning media only containing 

self stresses. 

1. It holds for arbitrary elastic homogeneity and anisotropy 

that 

IIS CTij dV • ° 
integrated over the whole volume (in the state of self 

stress). 

2. The total volume change of the medium is 

AV = t  , JJJ a     a*  dV + higher order terms 

for a nonlinear elasticity law with the material constants 

1    ö2©  | 
ijki  2 bo   do~ 

1J kZ la=0 
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Theorem 1 follows fron equilibrium considerations 1179].  Theorem 2 

follow« with theorem 1 if we expand the differential volume change 

Q in powers of c .  Theorem 2 was found and examined by Zener [178] for 

elastic isotropy in a slightly different form more adaptable for com- 

parison with existing experiments.  Seeger [176] expanded it to cubic 

crystal systems and applied it to dislocations. The tensor t  .  has 

the same symmetry and number of components as the elasticity tensor 

c. ., . of the related medium. 
ijkX 

The "volume theorem" of Colonnetti mentioned in section 1 

follows from theorem 1 by applying Hooke's Law. 



ILLUSTRATIONS 

Fig. 1. The symbol T represents edge dislocation. 
It appears the first time in  §23, 

Fig. 2.  Ideal crystal, cubic primitive lattice. 
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Fig. 3.  The crystal in Fig. 2 after an invasion 
of edge dislocation from the x -direction. 

^9 

Fig. 4. The edge dislocation in Fig. 3 has moved 
outside the crystal in the x^-direction. 
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Fig. 5. The top lattice plane of the crystal in Fig. 2 
after an invasion of a screw dislocation from the 
x -direction. 

Fig. 6. The screw dislocation in 
Fig. 5 has moved outside 
the crystal in the x - 
direction. 

Fig. 7.  The screw dislocation in 
Fig. 5 has moved outside 
the crystal in the x - 
direction. 
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'«r 12 
Fig. 8. The formation of a dislocation in a continuum. 

Fig. 9. The formation of a straight edge dislocation in a continuum. 
One visualizes that the slit in (a) is formed by the 
removal of material from a complete cylinder. 

Fig. 10. The formation of a 
screw dislocation in 
a continuum. 



WM» * - '■■■ +r?M*v*rm 

255 

*/♦ 
 ix, 

Fig. 11.  The definition of macroscopic tensors of plastic distortions. 
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j..ii:.As lit 

Fig. 12.  (a,b) Plastic distortion preserves the 
original orientation. (c,d) Elastic 
distortion will in general twist the 
original orientation. 

/   /   A 

Fig. 13.  A plastic distortion, which is 
accomplished without simultaneous 
elastic distortion, destroys in 
general the continuity of the 
body. 

Fig. 14. Coordinate system as in 
Fig. 13. 
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Fig. 15. 
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Fig. 16. Between each two layers of hx    in b and c, there is 
a dislocation wall of constant intensity.  The dislocation 
moves from the right. 

Fig. 17.  The formation of a Volterra's 
distortion of the 2nd kind. 
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Fig.   18. 

!,♦ 

Fig.   19.    The illustration of Frank-Burger's circuit. 
The letter P belongs to the further right  atom. 
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J * Flg. 20.  Plane crystal formed by 4 atoms. 
/^N    /T\ The atom pairs 1,3 and 2,4 are 

not neighboring atoms. 

0—© 

Fig. 21.  The definition of microscopic distortion tensors. 

--dx,  - 
i .?£> 

J; 

T, 

Fig. 22. 
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Fig. 23.  Grain boundary of the 1st kind.  The 
orientation variation between the adjacent 
grains is  |g| d, where d is the distance 
between dislocation linos.  This follows 
from Eu.   (Ill.32). 

Fig. 24. 

** 

-"■ 

T T T T T T T T 
T T T T T T T T 
T 
T 

T 
T 

T T 
T T" T ~ T  f- 

T T r -r r T T T 
T T T T T T T 

Fig. 25.  Dislocation aall as plane-clamped incompatibility dipole. 
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F'iK    26      Kace-centered  cubic crystal, 
from Jagodzinski    [tin] . 

Fig. 27  The most dense lattice 
plane, from Seeger [l34J. 

//////// 

Kig. 28.  (a) S«'Ii« r>ut i <: representation of an edge dislocation in 
th'j i'.ii'o-w ntered cubic lattice- (b) 'I his splits under the 
formation of a stacking fault into two partial dislocations, 
tVit'i tin.« mark ababab .. il is indicated that the sketched 
0 1(^ -planes represent a double layer.  K»-om Seeger [l34]. 



262 

A  i •   •   •   • •   •   •   • ■ u 

B 

Fig. 29. The illustration of Peierls' model. The lattice 
planes A and B (perpendicular to the paper) seperate 
the two half-spaces /\   and  D . 

Fig. 30. Typical work hardening of a 
face-centered cubic metal 
(e.g.Cu). In the elastic range 
the curve practically coincides 
with the t-axis on our scale. 

Fig. 31. Model for plastic elongation 
of a rod. From Schmidt-Boas [l29] 
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Fig.  32.    The construction of a dislocation ring 
with the help of Frank-Read-Mechani^ra. 

Fig. 33. Cross split of a screw dislocation. Stacking 
fault is shown by hatched area. Here z = x . 
From Seeger   [l34]. 3 
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F»g. M      The calculation of activation energy for the 
truss split in a screw dislocation.  The distance 
of extension is exactly 2 V .  From Seeger [134] . 

i. 

b 

r. 

Fi^. 35.  A simpler model for the calculation of activation 
energy for the cross split. 

&Q0 OCX oca OCK One ooa 
Fig. 36. (a) Interlatticc atom in the body-centered cubic crystal, 

along with model for carbon in iron. Only the front atoms 
are sketched clearly in whole size. For d = a 3 2 each 
atom contacts its eight closest neighbors, (b) The same as 
(a) after changing fie position of interlattice atom. 
Here y and 7.  = x 
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Fig. 37. Substitutional foreign atom 
in the most dense plane. The 
atomic array is distorted a 
little. 
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Fig. 38. Phase boundary as plane-clamped dislocation 
array. Dashed line is lattice plane of 
longitudinal section. 

Fig. 39. The calculation of interaction 
energy between circular dislocations. 
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